正文
纳米是十亿分之一米,纳米技术指的是纳米尺度范围内材料合成与操作的科学
(56-59).
在过去
20
年里,最重要的科技进步是纳米技术,与传统药物相比,纳米药物的优点之一是它们的粒径,对于水溶性较差的药物,溶出度受颗粒大小和药物颗粒表面积的影响较大。由于蒸汽压力的影响纳米颗粒可能会显示增加溶出度和饱和溶解度(
45,54,60
)。
产生纳米粒子的方法一般有两种。
第一种方法
是从大块材料开始,然后用机械的、化学的或其他形式的能量分解成更小的部分,这就是所谓的
自上而下
的方法。
另一种方法
是原子或分子通过化学反应合成某种材料,从而成为前体或者粒子长成预期的纳米尺寸,这种方法称为
自下而上
的方法(
34
)。表
1
总结了纳米粒子的制备技术,图
2
也展示了自上而下和自下而上方法的示意图。
表1:纳米粒子的制备技术
纳米粒子制备技术
|
举例
|
引用
|
自下而上
自上而下
化学反应
联合技术
|
沉淀法、乳液模板法、超临界流体法
气流粉碎、高压均质机、湿法球磨
聚合技术
自下而上+自上而下
自上而下+自上而下
|
(26,45,61,62)
(34)
(34)
(34)
|
图2:自上而下和自下而上方法
增溶和溶出度提高两种策略主要用于提高低水溶性药物的生物利用度。自乳化和胶束化是将粒径减小为纳米颗粒的第一组例子,纳米混悬剂和纳米晶体属于后一类(61-63)。在这里我们专注于研究纳米化对增强水难溶性药物的溶出度方面的影响。
通常纳米颗粒是指至少一个维度的尺寸小于
100 nm
的物体(
64
、
65
)。在药物释放领域的纳米粒子,是一般由大分子物质和聚合物组成的,能够通过不同的材料制备的固体亚微米胶体系统
(66)
。药物被截留、包裹或附着在纳米颗粒基质上(图
3
),根据制备方法,可以得到纳米颗粒,纳米微球或微囊。
图3:载药纳米粒子
纳米制剂可以通过口服、非胃肠道、眼睛、肺途径给药,在体内快速溶解或动脉摄取需要更小的粒径,然而缓释或单核巨噬细胞靶向则更大的颗粒更好(67)。应用纳米颗粒导致在体内快速溶解、吸收,从而提高生物利用度(68)。如前面章节所述,在纳米范围内的粒子与宏观/微观尺度或原子尺度有不同的物理化学特性。难溶性药物的纳米制剂药代动力学特性的提高受溶解特性的影响(41)。
吲哚美辛
(Indomethacin)是一种非甾体类解热抗炎药,在BCS分类中属于II类。Rezaei Mokarram和他的同事们比较吲哚美辛(Indomethacin)纳米颗粒和其微粉化药物与PVP形成的物理混合物之间的溶出度,他们用一种PH可控制的共沉淀法去制造吲哚美辛在PVP聚合物基质上的非晶体纳米颗粒。药物的纳米形式溶出度(30分钟溶出45%)高于微粉化药物PVP物理混合形式的溶出度(30分钟溶出10%)。根据作者所述,吲哚美辛(Indomethacin)纳米颗粒相比吲哚美辛或其与PVP的物理混合物都有更高的溶出度,是由于其粒径减小导致晶型的损失,并且由于亲水性聚合物的存在而增加了润湿性(69)。
在另一项研究中,刘和他的同事们结合了晶体习惯的改变和粒径的减小来合成
塞来昔布
(CXB)纳米颗粒,塞来昔布(CXB)是弱酸性低水溶性药物,在他们的研究中,通过粒径减小和晶型习惯的改变,塞来昔布(CXB)纳米颗粒的溶出度和生物利用度显著的提高。他们结合了超声反溶剂沉淀和高压均质法,这种组合已被证明是一种用于制备少量、均一、稳定的CXB纳米颗粒的很有前途的方法。他们分别用丙酮和水作为溶剂和抗溶剂。然后药物溶剂系统在超声条件下被注入含有羟丙甲纤维素和十二烷基磺酸钠的水溶液中。最终CXB混悬液通过高压均质将会变得更加均匀。喷雾干燥法被用于CXB纳米混悬液,因为它比冷冻干燥法需要更少的时间和能量。根据他们的结果,CXB纳米颗粒饱和溶解度增加了四倍,从而导致药物5分钟内在磷酸盐缓冲液溶出媒介中完全溶解,而原CXB在相同的时间内只能溶出30%。CXB纳米颗粒的Cmax 和AUC(0-24 h)分别是CXB胶囊的3倍和2倍(70)。
Kakran和同事通过制备纳米颗粒的方法提高
槲皮素
,一个难溶性的抗氧化剂的溶出度。在他们的研究中,用三种方法用于提高槲皮素的溶出度,分别是与PVP普朗尼克F127形成固体分散体,形成β环糊精复合物和制备纳米颗粒。结果表明,复杂形态的槲皮素和固体分散状态的槲皮素显著提高了药物的溶出度,但槲皮素纳米粒的溶出度明显高于未经处理的药物,他们用纳米混悬液蒸发沉淀的方法去制备纳米颗粒,并且研究了各种抗溶剂对纳米颗粒大小、形状的影响。以己烷为抗溶剂,得到了最小的颗粒(220 nm)。当水为抗溶剂时,形成的颗粒大、不规则呈片状,当苯存在或以己烷作为抗溶剂,颗粒小且呈针状(23)。
布洛芬
(Ibuprofen)是一种非甾体抗炎药,由于溶解缓慢,口服生物利用度较低。Mansouri和他的同事们应用溶剂/反溶剂沉淀法减少布洛芬的粒径,制成直径约300-400 nm的纳米颗粒。他们使用异丙醇作为溶剂,水作为抗溶剂,十二烷基硫酸钠,PVP,十二烷基硫酸钠,吐温80作为稳定剂。溶剂/反溶剂体系中的沉淀纳米粒子经过烘箱干燥产生布洛芬纳米颗粒。与游离药物相比,所制备的纳米粒子显示更高的溶出度(在前30分钟在纯化水中的溶解度提高2.3倍),在他们的研究中,反溶剂沉淀被用来作为一个简单而有效的方法来生产难溶性药物布洛芬的纳米粒子(62)。
美洛昔康
(meloxicam)是一种水溶性和生物利用度很差的抗炎药。Raval和Patel将美洛昔康减小尺寸,改造成无定型的形式,制备出的美洛昔康纳米颗粒在溶出度方面得到有效改进。这些通过反溶剂制备出的纳米颗粒,在高压和羟丙甲基纤维素与十二烷基硫酸钠的存在下生成沉淀。经过这样的组合,便生产出了溶出度显著提高的美洛昔康纳米粒子。在美洛昔康制成纳米粒子的前后,这种药品的溶出度从7%提高到了82%。他们使用喷雾干燥方法使美洛昔康纳米颗粒凝固(8)。
Badawi和他的同事准备
伊曲康唑
(ITZ)结晶纳米颗粒(平均粒径范围为0.23〜0.34μm),使用超声沉淀技术(相对简单和低成本的方法)。他们制定了十二个使用二氯甲烷(溶剂相)和乙醇(反溶剂相)制备ITZ纳米晶体的方案。使用吐温80或普朗尼克 F127,HPC,HPMC或inutec SP1的其中一种作为稳定剂,用作抗溶剂或溶剂相的稳定剂。冷却最终溶液并干燥纳米晶体。相比于纯的ITZ,制备的纳米晶体在10分钟的溶出率提高3.8-8.6倍(71)。
阿苯达唑
(Albendazole )是具有低生物利用度特性的二类药物。Koradia 和他的同事试图通过制备结晶纳米颗粒制剂(638.7nm-814.8nm)提高药物的生物利用度以及溶出度。在十二烷基硫酸钠作为稳定剂的前提下使用抗溶剂沉淀技术。为此准备了四种不同的
PVP K30的浓度(0.05,0.1,0.2和0.4%)。所有的配方都在纳米级范围,对比微米级,药品的分散和溶解能力有了显著提高。PVP K30的浓度设定为0.4%时,药品表现出了较高的溶出度(60小时内为70%)。未研磨的(微米级)相同时间只表现为10%(72)。
纳米晶体药物指的是纳米晶体的平均直径小于1000nm的药物
(54)。制备纳米晶体最常用的方法包括
纳米沉淀法
,
高压均质化
,
湿磨和喷雾干燥
(57,73)。在部分药物剂型中,纳米晶体增加药物的饱和溶解度,这会有助于药物在皮肤中的扩散 (66,72,74)。药物纳米晶体不同于由基质和合并药物组成的纳米粒子。换句话说,它们是由100%的纳米尺寸范围的药物结晶形式组成。
近年来,药物纳米晶体已经快速发展成为有前景的药品传递策略。目前已经制备出西罗莫司、阿瑞匹坦、非诺贝特、醋酸甲地孕酮、帕潘立酮、棕榈酸酯的纳米晶体并进入市场流通。
西罗莫司纳米晶体
(Rapamune®) 在2000年推出首款上市产品,有口服液和片剂两种制剂形式。相比于溶液,雷帕霉素片剂的生物利用度提高21%-27%,雷帕霉素的口服单次剂量为1或2毫克,总片重约365mg才包含1mg的主要成分。这意味着药片中晶体形式的重量占比很小(66,75)。
阿瑞匹坦纳米晶体
(Emend®) 胶囊,内含纳米晶体小球,是在2001年推出的第二款上市纳米产品。这种药物单次剂量为80或125mg可以治疗呕吐(66,75)。 包含
非诺贝特晶体
的TriCor®片剂和用于治疗艾滋病毒相关厌食症的
醋酸甲地孕酮
ES®分别是紧随其后的第三款和第四款上市药物。