专栏名称: 数盟
数盟(数据科学家联盟)隶属于北京数盟科技有限公司,数盟致力于成为培养与发现“数据科学家”的黄埔军校。 数盟服务包括:线下活动、大数据培训。 官网:http://dataunion.org,合作:[email protected]
目录
相关文章推荐
软件定义世界(SDX)  ·  一文读懂DeepSeek背后的核心技术 ·  2 天前  
大数据文摘  ·  刚刚!OpenAI 上线 ... ·  3 天前  
51好读  ›  专栏  ›  数盟

可怕,40行代码的人脸识别实践

数盟  · 公众号  · 大数据  · 2017-08-15 21:33

正文

请到「今天看啥」查看全文


一点区分

对于大部分人来说,区分人脸检测和人脸识别完全不是问题。但是网上有很多教程有意无意地把人脸检测说成是人脸识别,误导群众,造成一些人认为二者是相同的。

其实,人脸检测解决的问题是确定一张图上有木有人脸,而人脸识别解决的问题是这个脸是谁的。可以说人脸检测是是人识别的前期工作。

今天我们要做的是人脸识别。

所用工具

Anaconda 2 —— Python 2

Dlib

scikit-image

Dlib

对于今天要用到的主要工具,还是有必要多说几句的。Dlib 是基于现代 C++ 的一个跨平台通用的框架,作者非常勤奋,一直在保持更新。

Dlib 内容涵盖机器学习、图像处理、数值算法、数据压缩等等,涉猎甚广。更重要的是,Dlib 的文档非常完善,例子非常丰富。就像很多库一样,Dlib 也提供了 Python 的接口,安装非常简单,用 pip 只需要一句即可:

pip install dlib

上面需要用到的 scikit-image 同样只是需要这么一句:

pip install scikit-image

注:如果用 pip install dlib 安装失败的话,那安装起来就比较麻烦了。错误提示很详细,按照错误提示一步步走就行了。

人脸识别

之所以用 Dlib 来实现人脸识别,是因为它已经替我们做好了绝大部分的工作,我们只需要去调用就行了。Dlib 里面有人脸检测器,有训练好的人脸关键点检测器,也有训练好的人脸识别模型。

今天我们主要目的是实现,而不是深究原理。例子既然代码不超过 40 行,其实是没啥难度的。

首先先通过文件树看一下今天需要用到的代码:

准备了六个候选人的图片放在 candidate-faces 文件夹中,然后需要识别的人脸图片 test.jpg 。我们的工作就是要检测到 test.jpg 中的人脸,然后判断她到底是候选人中的谁。

另外的 girl-face-rec.py 是我们的 python 脚本。

shape_predictor_68_face_landmarks.dat 是已经训练好的人脸关键点检测器。

dlib_face_recognition_resnet_model_v1.dat 是训练好的 ResNet 人脸识别模型。

ResNet 是何凯明在微软的时候提出的深度残差网络,获得了 ImageNet 2015 冠军,通过让网络对残差进行学习,在深度和精度上做到了比 CNN 更加强大。

前期准备

shape_predictor_68_face_landmarks.dat dlib_face_recognition_resnet_model_v1.dat 都可以在这里找到。







请到「今天看啥」查看全文