首页   

如何用算法高效寻找素数?

算法与数据结构  · 算法  · 4 年前
来自公众号:labuladong


预计阅读时间:5 分钟

素数的定义很简单,如果一个数如果只能被 1 和它本身整除,那么这个数就是素数。

不要觉得素数的定义简单,恐怕没多少人真的能把素数相关的算法写得高效。本文就主要聊这样一个函数:

// 返回区间 [2, n) 中有几个素数 
int countPrimes(int n)

// 比如 countPrimes(10) 返回 4
// 因为 2,3,5,7 是素数

你会如何写这个函数?当然可以这样写:

int countPrimes(int n) {
    int count = 0;
    for (int i = 2; i         if (isPrim(i)) count++;
    return count;
}

// 判断整数 n 是否是素数
boolean isPrime(int n) {
    for (int i = 2; i         if (n % i == 0)
            // 有其他整除因子
            return false;
    return true;
}

这样写的话时间复杂度 O(n^2),问题很大。首先你用isPrime函数来辅助的思路就不够高效;而且就算你要用isPrime函数,这样实现也是存在计算冗余的

先来简单说下如果你要判断一个数是不是素数,应该如何写算法。只需稍微修改一下上面的isPrime代码中的 for 循环条件:

boolean isPrime(int n) {
    for (int i = 2; i * i <= n; i++)
        ...
}

换句话说,i不需要遍历到n,而只需要到sqrt(n)即可。为什么呢,我们举个例子,假设n = 12

12 = 2 × 6
12 = 3 × 4
12 = sqrt(12× sqrt(12)
12 
4 × 3
12 = 6 × 2

可以看到,后两个乘积就是前面两个反过来,反转的分界点就在sqrt(n)

换句话说,如果在[2,sqrt(n)]这个区间之内没有发现可整除因子,就可以直接断定n是素数了,因为在区间[sqrt(n),n]也一定不会发现可整除因子。

这样,isPrime函数的时间复杂度降为了 O(sqrt(N)),但是我们实现countPrimes函数其实并不需要这个函数,以上只是希望读者明白sqrt(n)的含义,因为等会还会用到。

高效实现 countPrimes

高效解决这个问题的核心思路是和上面的常规思路反着来:

首先从 2 开始,我们知道 2 是一个素数,那么 2 × 2 = 4, 3 × 2 = 6, 4 × 2 = 8… 都不可能是素数了。

然后我们发现 3 也是素数,那么 3 × 2 = 6, 3 × 3 = 9, 3 × 4 = 12… 也都不可能是素数了。

看到这里,你是否有点明白这个排除法的逻辑了呢?先看我们的第一版代码:

int countPrimes(int n) {
    boolean[] isPrim = new boolean[n];
    // 将数组都初始化为 true
    Arrays.fill(isPrim, true);

    for (int i = 2; i         if (isPrim[i]) 
            // i 的倍数不可能是素数了
            for (int j = 2 * i; j                     isPrim[j] = false;

    int count = 0;
    for (int i = 2; i         if (isPrim[i]) count++;

    return count;
}

图片来自 Wikimedia

如果上面这段代码你能够理解,那么你已经掌握了整体思路,但是还有两个细微的地方可以优化。

首先,回想刚才判断一个数是否是素数的isPrime函数,由于因子的对称性,其中的 for 循环只需要遍历[2,sqrt(n)]就够了。这里也是类似的,我们外层的 for 循环也只需要遍历到sqrt(n)

for (int i = 2; i * i     if (isPrim[i]) 
        ...

除此之外,很难注意到内层的 for 循环也可以优化。我们之前的做法是:

for (int j = 2 * i; j     isPrim[j] = false;

这样可以把i的整数倍都标记为false,但是仍然存在计算冗余。

比如i = 4时算法会标记 4 × 2 = 8,4 × 3 = 12 等等数字,但是 8 和 12 已经被i = 2i = 3的 2 × 4 和 3 × 4 标记过了。

我们可以稍微优化一下,让ji的平方开始遍历,而不是从2 * i开始:

for (int j = i * i; j     isPrim[j] = false;

这样,素数计数的算法就高效实现了。其实这个算法有一个名字,叫做 Sieve of Eratosthenes。看下完整的最终代码:

int countPrimes(int n) {
    boolean[] isPrim = new boolean[n];
    Arrays.fill(isPrim, true);
    for (int i = 2; i * i         if (isPrim[i]) 
            for (int j = i * i; j                 isPrim[j] = false;

    int count = 0;
    for (int i = 2; i         if (isPrim[i]) count++;

    return count;
}

该算法的时间复杂度比较难算,显然时间跟这个嵌套 for 循环有关,其操作数应该是:

   n/2 + n/3 + n/5 + n/7 + …
= n × (1/2 + 1/3 + 1/5 + 1/7…)

括号中是素数的倒数和。其最终结果是 O(N * loglogN),有兴趣的读者可以查一下该算法的时间复杂度证明。

以上就是素数算法相关的全部内容。怎么样,是不是看似简单的问题却有不少细节可以打磨呀?


●编号1034,输入编号直达本文

●输入m获取文章

程序员数学之美

程序员数学学习

锻炼数学逻辑思维

推荐文章
餐企老板内参  ·  复工在即,快撤回共享的员工!  ·  4 年前  
邵先森一  ·  “祝福你”“嗯,谢谢”  ·  5 年前  
© 2022 51好读
删除内容请联系邮箱 2879853325@qq.com