专栏名称: 算法与数学之美
从生活中挖掘数学之美,在实践中体验算法之奇,魅力旅程,从此开始!
目录
相关文章推荐
超级数学建模  ·  限时领 | ... ·  昨天  
超级数学建模  ·  解决夏天崩溃第一步:有它,走哪都凉快! ·  昨天  
超级数学建模  ·  修丽可太火了!发光瓶精华6.18提前购,每个 ... ·  昨天  
九章算法  ·  Meta薪资又爆了! ·  2 天前  
51好读  ›  专栏  ›  算法与数学之美

集合论的诞生

算法与数学之美  · 公众号  · 算法 数学  · 2016-09-11 22:50

正文

请到「今天看啥」查看全文


。因而只有当我们了解了康托尔在对无穷的研究中究竟做出了些什么结论后才会真正明白他工作的价值之所在和众多反对之声之由来。

数学与无穷有着不解之缘,但在研究无穷的道路上却布满了陷阱。因为这一原因,在数学发展的历程中,数学家们始终以一种怀疑的眼光看待无穷,并尽可能回避这一概念。但试图把握无限的康托尔却勇敢地踏上了这条充满陷阱的不归路。他把无穷集这一词汇引入数学,从而进入了一片未开垦的处女地,开辟出一个奇妙无比的新世界。对无穷集的研究使他打开了“无限”这一数学上的潘多拉盒子。下面就让我们来看一下盒子打开后他释放出的是什么。

“我们把全体自然数组成的集合简称作自然数集,用字母N来表示。”学过集合那一章后,同学们应该对这句话不会感到陌生。但同学们在接受这句话时根本无法想到当年康托尔如此做时是在进行一项更新无穷观念的工作。在此以前数学家们只是把无限看作永远在延伸着的,一种变化着成长着的东西来解释。无限永远处在构造中,永远完成不了,是潜在的,而不是实在。这种关于无穷的观念在数学上被称为 潜无限 。十八世纪数学王子高斯就持这种观点。用他的话说,就是“……我反对将无穷量作为一个实体,这在数学中是从来不允许的。所谓无穷,只是一种说话的方式……”

而当康托尔把全体自然数看作一个集合时,他是把无限的整体作为了一个构造完成了的东西,这样他就肯定了作为完成整体的无穷,这种观念在数学上称为 实无限思想 。由于潜无限思想在微积分的基础重建中已经获得了全面胜利,康托尔的实无限思想在当时遭到一些数学家的批评与攻击是无足为怪的。然而康托尔并未就此止步,他以完全前所未有的方式,继续正面探讨无穷。他在实无限观念基础上进一步得出一系列结论,创立了令人振奋的、意义十分深远的理论。这一理论使人们真正进入了一个难以捉摸的奇特的无限世界。

最能显示出他独创性的是他对无穷集元素个数问题的研究。 他提出用一一对应准则来比较无穷集元素的个数。他把元素间能建立一一对应的集合称为个数相同,用他自己的概念是等势。 由于一个无穷集可以与它的真子集建立一一对应,例如同学们很容易发现自然数集与正偶数集之间存在着一一对应关系,也就是说无穷集可以与它的真子集等势,即具有相同的个数。这与传统观念“全体大于部分”相矛盾。而康托尔认为这恰恰是无穷集的特征。







请到「今天看啥」查看全文