专栏名称: GiantPandaLLM
专注于机器学习、深度学习、计算机视觉、图像处理等多个方向技术分享。团队由一群热爱技术且热衷于分享的小伙伴组成。我们坚持原创,每天一到两篇原创技术分享。希望在传播知识、分享知识的同时能够启发你,大家一起共同进步(・ω<)☆
目录
相关文章推荐
GiantPandaLLM  ·  图解Vllm ... ·  昨天  
GiantPandaLLM  ·  【博客转载】Row-Major VS ... ·  2 天前  
51好读  ›  专栏  ›  GiantPandaLLM

书生·浦语大模型升级,突破思维密度,4T数据训出高性能模型

GiantPandaLLM  · 公众号  · 3D  · 2025-01-16 21:16

正文

请到「今天看啥」查看全文


上海AI实验室研究团队认为,数据质量的提升带来的增益会显著高于数据规模的提升,而数据的“思维密度”(IQPT,Intelligence Quality per Token)是数据质量的核心,即数据的思考过程中蕴含的逻辑性、复杂性、启发性等。为此,团队提出大规模数据精炼框架,大幅提高了训练数据的质量。在具体实践中,书生·浦语3.0仅使用4T token的预训练数据,即实现主流开源模型18T数据的训练效果。通过构建数据“思维密度”杠杆,撬动模型性能提升,为突破Scaling Law带来了新的研究范式。
为了更好评估数据“思维密度”的影响,研究人员对指标进行量化定义,将数据思维密度(IQPT,Intelligence Quality per Token)定义为模型平均性能与训练数据量的比值,可以衡量大模型训练数据的“投入产出比”。对比国内外性能领先的同量级开源模型,以Llama3.1作为基准,书生·浦语3.0的数据思维密度高出4倍以上。
通过数据精炼框架,研究团队使书生·浦语3.0大幅提升了数据效率,实现思维密度的跃升。该框架包括以下两个核心要素:
  • 数据处理的智能化:为了实现数据的精细化处理,研究团队将数据分为千万个领域,在此类人力难以负担的规模上,通过智能体自我演进技术,大规模自动化质检,根据错例进行反思,为每个领域进行定制化处理。
  • 高价值数据的合成:基于通专融合的方式,以通用模型快速迭代合成算法,再精选数据训练专用模型,通过在海量天然数据中进行素材挖掘,改进的树状搜索策略,以及多维度质量验证,合成大量内容丰富,质量可靠的高价值数据。
基于司南OpenCompass开源评测框架,研究团队使用统一可复现的方法,对书生·浦语3.0等模型进行了评测。评测采用了CMMLU、GPQA等十多个权威评测集,维度包括推理、数学、编程、指令跟随、长文本、对话及综合表现等多方面性能。评测结果显示,相比同量级开源模型,书生·浦语3.0在大多数评测集得分领先,综合性能十分接近GPT-4o-mini。

深度思考和常规对话融合,“能言”亦“巧思”

以“通专融合”路径探索通用人工智能,其关键技术之一在于同步提升深度推理与专业泛化能力。本次发布的书生·浦语3.0,首次在通用模型中实现深度思考与常规对话融合,一个模型就能应对更多真实使用场景。






请到「今天看啥」查看全文