正文
我们如果从直观去理解,这样一个深度学习最关键的特点,它是更强大,更通用的,能够更高效地训练数据的建模机器。
我们举一个具体的例子供大家理解深入学习关键突破的点,模式识别。左边假设是一张人脸图像判断它是男的还是女的,按照经典人脸识别套路,可以提取它的特征,头发、胡须,训练相关模型,用各种语言,一系列机器学习的模型,最后来建初模型,做触摸式识别。但是用了深入学习之后一个很关键的特点,提取特征的环节已经没有了。对于机器而言,现在已经只需要 ,或者整个模式识别内容已经简化为准备数据和训练模型,最简单的两个环节。
如果大家注意到AlphaGo的算法原理,它也是类似这样操作的,对图象识别来说不再需要任何特征的提取,直接把像素值输进去。对于AlphaGo而言,它也是用深度学习,而且直接把19×19格子上围棋黑白棋信息输入神经网络,判断当前棋局下黑棋赢的概率是多少,不再用人工方法告诉AlphaGo应该去看什么样的东西,它输入的都是最原始的信息。如果把深入学习看成一个黑盒子的话,可以理解这次人工智能的变革。就是拿足够多的有监督海量迅速数据,来直接输入一个黑盒子,它就可以获得一个与人类可媲美的人工智能技术。简单来说,一万个小时训练样本,再去训练10的7次方自由度或者参数、个数的神经网络,就可以达到与人类可媲美的语音识别效果。
当然,这个不是黑盒子,用的是包括GPU为主的计算服务器。
所以再抽象的来看,人类可比的人工智能其实是靠大数据喂起来的,或者靠大数据、大成本、大量计算喂起来的。
确实现在我们进入了一个深度学习的时代,因为深度学习的通用性,已经不再需要针对任何一个特定任务去做很多特征提取,或者相应的分析和研究工作。所以深度学习至少从科大讯飞看来,2013年起已经被广泛应用在语音和语言的各个方面。我们现在几乎用的所有方法都是以深度学习为主框架方式来做语音合成、评测,包括语言模型、机器翻译与人脸识别所有的方向,全部在深度学习框架上。
而且更关键是大家如果做投资也好,做相关创业者,一定要记得另外一条。深度学习也在不停的往前演进,2011年主流的DN技术路线实现了广泛的应用。但是到了2015年提出了有效模拟人类神经注意的模型。现在全世界相关会议论文,50%以上都和深度学习相关,或者说全世界所有智力学者都在研究和改进深度学习。深度学习本身也会持续改进,因为持续改进,每年都会费掉讯飞研究院30%的代码。
你可以爱上自己的工作,但一定不要爱上自己的工作成果,因为技术变化非常非常的快。
刚才说的更多是偏语音图象识别的概念,深度学习在2014年左右开始,已经站在最经典的语言翻译基础上,取得了更好的效果,它也是采用最新Atentional技术。它所用的方法是基于海量中英文句队,机器可以有效的实现机器翻译。而且现在大家所喜闻乐见的聊天机器人,自动做诗全是用这个套路所实现的,机器并不能真正的懂得语义。人工智能还在继续往前走,被广泛认为可以替代图灵测试,来测试机器智能有没有像人思考的测试。这个测试是用常识推理的任务,检验机器是否具备这方面的智能。
举个例子,爸爸没法举起他的儿子,因为他很重,是谁很重,所有人都很容易理解是儿子很重。如果爸爸没法举起他的儿子,因为他很虚弱,大家都知道是爸爸很虚弱。科大讯飞提出了基于神经网络主要方法的深度学习认知智能路线,取得了2016年评测第一名。这里要告诉大家的是,第一名的成绩在5选1的选择里,我们正确率只有58%,所以相对而言和人类接近100%智力相比,还是有相应的一些差距。
第三个,刚才说了神经网络,大数据,第三个推动人工智能在最近这五年内取得飞速发展的就是云计算。
因为在云计算的支撑下,人工智能首先扩大了整个模型的规模。刚才说了10的7次方参数的模型能够有效被应用起来,以及也获得了大量真实数据,我们前面所说的人工智能所需要的位进学大数据获得了有效支撑。以及云计算模式,每天更新一个版本,加速了技术迭代的速度,所以云计算是人工智能进步的技术推手。
整合前面所说的,人工智能专业技术公司必须拥有的三大要素。顶尖人工智能算法及团队,为什么要团队,因为算法持续往前演进。同时要有独特优势的大数据积累,以及云计算的能力和服务。这三个加在一起,它就可以去实现包括科大讯飞在内所做到的,每年相对30%-50%的错误率下降。这里有一个技术上概念,错误率相对下降,错误率相对下降是评价一个人工智能系统往前改进难度的概念。简单来说语音识别错误率从20%降到10%的难度,等同于从2%降到1%,因为它们相对下降都是50%。
大家前面也说了,摩尔定律走了几十年,而人工智能类似的摩尔定律,30%为错误率相对下降基线,每年错误率相对下降持续了至少五年以上。而且我们也相信通过算法的演进,数据的积累和云服务的模式,这个相关的人工智能摩尔定律还会继续往前走至少3-5年。我们要从两个方面来看这30%到50%的错误率相对下降,第一,如果你所从事相关人工智能算法,年平均错误率下降没有达到这个值,那就证明你在整个人工智能竞争中是处于相对落后的状态。现在我们在拼人工智能,已经不再是拼现在已经达到的水平,而是拼你在人工智能的速度进一步加速度。第二,当你看到某个技术现在还不完全好用的时候,比如说现在的视频监控中人脸识别,但是如果我们把前面三件事情做起来的话,它可以保持每年相对错误率30%下降幅度。
简单来说,如果今年错误率是20%,那么明年就是14%,再往后可能就到10%的水平。所以创业也好,投资也好,你可以拥有这样一个摩尔定律去预计相关的技术在什么时间点,能够达到用户可接受的门槛,这是很关键的一点。当然这里可以打一个硬广告,如果你没有人工智能顶尖算法和团队,或者没有云计算、云服务的能力。但你针对自己的行业,或者相关认识的朋友有很独特优势的大数据,那么你可以直接拿着大数据去找这样一些科大讯飞人工智能专家。就像吴军老师所说的,通过新的技术去改造原有的相关算法,或者相关的系统,来达到人工智能武装传统的行业。
前面讲的是真正所理解的人工智能这次浪潮背后的原因,三大推手。下面是创业者和投资者希望听到的,对于科大讯飞17年来在智能语音和人工智能走过历程中总结出来的一些经验,或者说教训。
确实,人工智能是最近五年,或者最近三年才真正火起来,特别2016年是最火的一年。但是对科大讯飞而言,我们99年从科大大学生创业以来,一直在追求人工智能的梦想。因为技术的进步,我们打开整个相关的市场空间,进入了更好的发展机会。
这里首先要说的一个挑战,大家都知道人工智能是所谓技术,但是人工智能和传统意义上的技术在落地方面,在立地方面有很大的不同点。大家也许不能完全理解,我为什么把机器翻译和WIFI放在一起来理解。是这样的,当世界上推出一个WIFI技术的时候,所有人都会欣然接受它,不会说你的WIFI,我不需要,我可以通过自身能力实现手机和终端设备联网的能力,因为所有的WIFI是人类自身所不具备的技术范畴。而机器翻译不一样,只要是大学生,都能找出来现在的机器翻译系统所出现的系统。所以当你把一个机器翻译技术推出去,或者把语音识别技术推出去的时候,别人总会质疑你,你的技术和人的能力相比实际上还是有差距的。我未必要用,我可以自己搞定。
简单来说,人类的智能相对人工智能来说,它的打击是无处不在的。是的,机器可以做出一些搬运运货机器人,但是搬运工说不用也可以搞得定。自动驾驶和驾驶员的PK,以及速录员对语音转写,医生对于沃森的系统。虽然说现在智慧医疗宣传得非常好,但是要传统领域医疗医生接受这个新鲜事物还需要一个漫长的过程。科大讯飞所独家在做的自动阅卷技术,拿到老师那边去的时候,老师始终会以挑剔或者质疑的眼光来看待。
应该说任何一个方面,人类智能都是人工智能的师傅和竞争对手,所以我们在做人工智能创业的时候一定要想清楚,你和传统做一个WIFI的创新,和做一个什么其它人类不具备能力的技术相比,人工智能的落地会有更多面临的挑战和困难。但是,作为人类徒弟的人工智能,其实它有非常多的优势。
如果要充分的发掘,或者说借势于这样一些优势,就能够有效实现人工智能产业的落地,或者说创业的成功。我这里总结了五条,未必是完全,大概可以供各位参考。
第一,人工智能技术可以作为人机,或者其它系统人机接口。
因为人自身的能力就只能是人自身的,人机智能可以拓宽交互系统。当手写识别作为发短信,作为人与人之间信息沟通人机接口的时候,它就实现了有效大规模的应用落地。我们现在的扫描识别也是为检索分析做的应用,现在车派识别为什么多起来,是因为停车场收费管理里对车派识别应用有广泛的需求。人脸识别很多时候是为了身份认证和手机支付,这样一种真实的,用户有明确需求的,人机接口才可以做广泛的落地。