专栏名称: 北大法律信息网
北大法律信息网(www.chinalawinfo.com)是北大英华公司和北大法制信息中心共同创办的法律综合型网站,创立于1995年,是互联网上起步较早的中文法律网站。
目录
相关文章推荐
长城新媒体  ·  樊振东确定参加乒超第二阶段比赛 ·  6 小时前  
长城新媒体  ·  樊振东确定参加乒超第二阶段比赛 ·  6 小时前  
青岛新闻网  ·  乒乓球运动员波尔,正式退役 ·  昨天  
青岛新闻网  ·  乒乓球运动员波尔,正式退役 ·  昨天  
科幻世界SFW  ·  新刊速递 | ... ·  3 天前  
51好读  ›  专栏  ›  北大法律信息网

张凌寒:网络平台监管的算法问责制构建 | 东方法学202103

北大法律信息网  · 公众号  ·  · 2021-05-21 18:09

正文

请到「今天看啥」查看全文


平台问责原理:主客观相一致的算法责任


平台算法自动化运行造成了“主体—行为—责任”传统理论下的“责任鸿沟”,其实质是以缺失控制权作为理由主张“无过错则无责任”。为此,人工智能时代的平台责任设置必须既符合平台的技术逻辑,也符合法律责任主客观相一致的法律原理。技术原理是中立的、没有主观过错的,但技术的应用如算法的设计与部署是包含价值观和主观意图的,这是法律追责之根本指向,也是平台承担法律责任的根本依据。平台监管的需求不是严格监管而是精准监管,在平台责任的设置中加入主观过错的考量,可以使平台责任设置具有体系性与合比例性。


(一)平台算法问责的适用场景:弥合“责任鸿沟”


平台算法问责主要适用于如下场景:当损害(危害)是由算法造成时,平台主张算法自动运行“技术中立”而不应承担法律责任时,应对平台算法问责并考察平台在算法设计或运行方面的主观过错,用以弥合平台算法自动化运行造成的“责任鸿沟”。


“责任鸿沟”是2004年由安德利亚斯·马提亚提出的概念,所指的是算法自主学习使得算法的设计者和运营者未能预测未来及其运行产生的后果,人对机器的行动并没有足够的控制权,因此无法要求其承担传统的机器制造者和操作者的过错责任。依照传统的归责原则,一个法律主体只有在其知晓自己的行为及其后果,并且可以自由选择是否作为的时候,才应该承担法律责任。因此,对于机器运行造成的损害结果,传统责任理论一般追究制造者的责任,如果操作者按照制造者设计的具体意图操作,就意味着其对责任的继承和接受。“责任鸿沟”的本质是算法的设计部署者主张因对算法运行缺乏控制力,因此无主观过错则无责任。在平台算法自动运行造成损害结果时,判定应启动算法问责制一般应符合如下场景:


第一,算法运行而非人的行为造成了损害结果。这是因为,如果人的行为在损害结果的产生中占据了主要地位,则一般会落入“主体—行为—责任”的法律责任框架。而一旦算法的自动化决策对结果呈现占据主导地位,则会产生“责任鸿沟”。举例而言,大众耳熟能详的“大数据杀熟”背后是算法的差异化定价,因此会产生是否合法的讨论。而如果由人来进行“消费越多,价格越高”的价格歧视行为则显然是不合理的。


第二,算法的形式多为平台的“基础服务”或“一般规则”。“基础服务”是指平台算法搭建的平台交易架构与流程,包括但不限于数据收集、存储,认证与信息安全,纠纷解决机制,行为控制激励机制等。从表面上看算法是全自动的决策,实际上算法根据预先设定的输入会自动触发后果。算法也经常以平台运行“一般规则”的形式出现,包括但不限于算法的分配、派单、排序、推荐等功能。在平台设定的目标内,算法的规则对平台内的个体普遍适用,自动生成结果。如电子商务中的全自动定价、叫车平台上的司机与乘客匹配、外卖平台上的用户信用评价、短视频平台上的内容推荐等。


第三,损害常表现为由多方因素造成而难以确定责任来源。有时数据的来源和数据质量都可能造成算法运行的损害结果。例如,在德国前第一夫人贝蒂娜·武尔夫起诉谷歌诽谤责任一案中,谷歌提出的抗辩理由就是“搜索联想词由算法根据实时数据等自动生成,客观无法控制”。算法运行的不利后果并非孤立、静态、割裂的,而可能是数据、算法和平台相互联结聚合而成的结果。


以上三种情形,都可被平台用来抗辩并未存在主观过错,因而无须承担法律责任。面对算法带来的平台“责任鸿沟”,平台责任理论以扩张平台安全保障义务来应对,这导致平台被不恰当地类比为提供经营场所的商家,面临着平台责任被无限扩大化的风险。从平台和消费者的角度来看,这些平台责任分配上的不确定性都是创新和产业发展的障碍。明确平台法律责任追究的理论基础与依据,是保障平台发展与消费者权利的共同需求。


(二)平台为算法承担过错责任的理据


算法平台即利用算法构建商业模式、争夺用户流量,又利用算法的自动性试图减轻甚至避免监管与责任。技术原理虽然是中立的,但是平台对算法的设计和部署是包含价值观和主观意图的,对算法运行的结果是有基本预见的。这是法律追责的根本指向,也是对平台算法问责的根本依据。将算法设计部署的主观过错作为平台追责的根本依据有三项理据:


1.平台作为算法设计者嵌入了主观意图


首先,算法隐含了平台的价值观和主观意图。例如,十年前有学者即提出“设计隐私”理念,主张平台在算法设计时就应将保护用户隐私的价值嵌入平台架构。我国在2019年开展的App治理专项行动中,也将“嵌入代码、插件”和“提供注销功能”等设计层面的算法作为治理对象,违反者则认定为具有不当收集个人信息的故意。由此可见,平台算法对基本交易规则和基础服务的默认设置并不能抹杀其嵌入了设计者主观意图的实质。


事实上,平台很多时候也承认对算法设计和部署的主观意图。在搜索王与谷歌的案件中,搜索王公司声称谷歌的恶意篡改网页排名算法导致其访问量急剧下降。谷歌工程师直言这是谷歌故意编辑的结果,因其享有“作为言论者的权利”。滴滴出行科技有限公司某高管也曾定义涉及强奸杀人恶性案件的“顺风车”服务是“性感的社交场景”。可见,平台算法的设计部署即蕴含着平台的主观意图和价值判断。


其次,算法深度学习的“技术黑箱”也无法抹杀平台设计算法的主观意图。深度学习使得算法输入可以为提取得到的多种特征,输出可以为目标任务的标签或者数值,本质上构建了一种复杂的非线性变换。算法的输出目标一旦被设立,就会自动通过深度学习接近这一目标。换句话说,算法自动学习向深层架构发展,它的规则和运作方式很可能让开发者都无法理解。


最后,实质上,深度学习的平台算法同样适用算法问责制,因为算法只是借由深度学习获得了“异质自治权”。归根结底,算法只是在人类设定的目标范围内,起到了替代人类的作用。从哲学的角度来看,责任只能归因于具有自主行动能力的道德主体(人)。现阶段的弱人工智能算法可以被理解为在复杂的环境中无需人工监督,具有自动收集、处理和输出数据的能力。这种自动化的能力确切地说应被称为“异质自治权”,也就是在目标范围内为算法提供的最高程度的自治权,而非无限的自治权。换句话说,平台系统中,自动运行的算法被人类赋予要完成的任务,由算法自行决定完成这些任务的方式。深度学习造成的算法黑箱内的技术细节,并无法掩盖设计开发算法的主观意图。以“剑桥丑闻”为例,监管部门即使不知晓“剑桥分析”的算法源代码,也不妨碍其了解算法运行目的在于定向投放政治广告操纵选举。


2.平台作为算法使用者具备运行控制力与合规义务


当平台不是算法的设计者,而仅为算法的使用者时,平台也需因其具备对算法运行的控制力而承担算法问责的后果。平台屡屡将算法运行中“控制力缺失”作为抗辩法律责任的理由,最为常见的是平台以“行为人与责任人相分离”作为抗辩理由。


“行为人与责任人分离”是指对平台法律追责的原因,往往是由用户或者第三方行为引发的,平台并不“生产”违法内容,因此不应为此承担法律责任。例如,微博上的用户发布侵犯他人名誉权的内容,行为人是提供“内容信息提供”的用户而非平台。这一观点源自1996年美国《通信内容端正法案》第230条交互式计算机服务者不被视作提供内容信息的出版商,因此为网站和互联网服务提供商提供了强大的豁免权。之后,2000年的美国数字千禧版权法案(CDMA)沿袭了这一对互联网产业宽松包容的政策,确立“通知—删除”规则,允许网络平台被动中立无需主动发现和介入违法事实。在我国平台民事责任的认定中,也经常将平台认定为“帮助侵权”行为,而主张平台承担较轻的法律责任。


实际上,算法赋予网络平台对信息流的自动处理能力,使得平台的法律责任早已超越了“网络服务提供者”而独立化。平台貌似并不生产具体内容,只是通过算法对具体网页(商户、内容)进行排序与呈现。然而,比起内容生产者,平台算法所起到的屏蔽、推送、排序对用户接收的信息具有更强大的干预作用。从信息论的角度来说,平台算法显著降低了海量网络信息的混乱程度,将用户需要的信息以“关键词——店铺排名”或者“关键词——搜索建议”的形式提供给用户,这本身就是信息,平台也是此种意义上的“信息生产者”。无论是搜索引擎、新闻网站,还是电闪管平台,都扮演着这种信息生产者的角色。例如,淘宝网站虽然不直接出售商品,但其算法决定了商家是否能呈现于消费者的页面中。淘宝搜索规则在2010年7月8日的调整将小商家排序靠后导致流量急剧下降,导致淘宝网众多商家的聚众抗议事件。


因此,即使平台仅为算法的使用者,也需要为算法运行承担责任。以谷歌为例,2016年谷歌发现“希特勒”的自动补足是“希特勒是英雄”,以及“犹太人”自动补足为“犹太人是邪恶的”之后,出手对搜索的自动联想结果进行了修改限制。早在2009年,我国监管部门因谷歌算法的自动联想功能涉嫌传播淫秽色情内容要求其整改,谷歌随即表示“将彻查所有的服务,并采取一切必要措施来解决搜索结果中存在的问题”,此举与被认为谷歌完全有能力控制搜索算法的结果,而并非其一贯宣称的由算法自动生成。“责任鸿沟”只是平台规避法律责任的工具,随时可以根据需要拿出或者收起。


退一步说,即使不从平台对算法控制力的角度论证,世界各国的实践也要求平台承担算法运行(数据处理活动)的合规义务。无论是欧盟一般数据保护条例(GDPR)第35条,还是我国个人信息保护法(草案)第54条,均要求平台对算法运行对“个人的影响及风险程度”,以及“所采取的安全保护措施是否合法、有效并与风险程度相适应”承担合规义务。这就要求平台在对涉及个人数据处理的重要问题上先进行自我评估,将有可能侵犯用户数据的行为作出相应的决策以及应对数据侵犯的措施,进而将数据处理影响评估内容报告给相关机构。因此,即使平台不是算法的设计者而仅为部署和运行者,也需承担相应的注意义务与合规义务。


3.平台对算法结果输出负有注意义务


实时数据成为算法输出结果的重要因素。即使平台在算法设计、运行上均无过错,也需要为因数据问题造成的算法损害结果承担责任,理由如下:


第一,平台作为算法设计者时,具有自主性的算法对外部实时网络环境作出的反应方式并非完全不可预测,其对不良数据的反应能力仍在算法设计范围内。假定算法在上线后就有了修改自身的能力,这种能力并非从天而降,仍是算法设计者为其产品提供的能力。并且,这种对实时数据的反应能力并非没有限度,而是在事先划定的范围之内进行的。很显然,平台如果作为算法设计者,应将算法对实时数据的反应输出能力设定在安全范围内,以免发生不良后果。


第二,平台作为算法使用者时,应设计算法的干预和嵌入安全机制。对于更复杂的算法,可能需要远程监控,以便在人们认为即使有潜在危险时(即使在远程)加强安全措施。以2020年4月判决的“蚂蚁金服诉企查查案”为例,企查查推送的涉及蚂蚁微贷的清算信息,因算法运行推送方式的设置问题,引发公众将历史清算信息误认为即时信息,发布了“蚂蚁金服破产清算”的算法错误结果。这一案例显示,即使算法自动抓取数据得出结果,平台仍应负有审查算法结果的注意义务。正如判决书所言:“大数据企业对于收集、发布的数据信息仍具有基本的注意义务,对于发布的重大负面敏感信息,应当通过数据过滤、交叉检验等数据处理,确保数据质量。”


第三,平台算法投放前要充分进行线上环境的安全测试。算法应经过数据的“训练”,确保它能够应对现实生活中的数据风险,否则不应将其投放市场。例如,微软的AI聊天算法Tay在推特上运行了几个小时后,就发表了同情纳粹的言论。微软显然并没有设计这一结果出现,但是其作为设计部署者应该能够预见到将一个机器人暴露在推特这个不乏骚扰和仇恨言论平台上的危险,也应设计程序记录这些恶意的影响来源于哪里。算法从环境中习得适应性行为,因此平台保证算法在设计、部署阶段进行足够的训练,在训练中需模拟实时环境,给算法足够的犯错机会,这是系统运行和改善性能的可行路径。


平台的算法运行造成的危害后果可能是多方作用的结果,但这并不足以使平台逃避其算法责任。在这种情况下,对于任何算法的最终运行结果,可能有多个潜在的责任方。但不论算法通过深度学习如何演变,平台作为设计者和部署者都对算法演变有一定的义务,包括监督记录其运行和防止危害结果出现。这也是巴尔金所提出的“制造者义务体系”,涉及封闭式和开放式的算法中要求嵌入审计日志,或提前考虑到开放式算法的权限控制。


在法律应以平台设计部署算法的主观意图为追责之指向的前提下,需要澄清的是平台算法责任是一种过错责任,但并不意味着过错责任是算法责任的唯一归责原则。如同在侵权责任领域,过错责任是默认的责任形态,但也同时存在着特殊侵权形态的无过错责任或公平责任形态。算法的应用形态并不局限于商业平台,已经被广泛应用于信用评分、政府管理甚至是司法审判中,不同场景下的算法责任不可能适用同样的归责原则,必然会随着算法所处理的数据所涉利益的性质发展出不同样态的归责原则。某些应用于公民自由、重要权利等特定部门的算法,就应如同巴尔金指出的那样,承担公共责任,以类似环境侵权的严格责任要求算法避免对社会公平的污染效应。即使在笔者所限定的平台算法论域,算法可能用来导航、新闻推荐、投放竞选广告和动态定价,除基本的过错责任原则外,不应否认其他归责原则适用的可能性。有学者提出,平台某些领域的运行应嵌入公共义务,承担一定的公共责任,这既可能通过扩大平台注意义务的形式实现,也可能以改变归责原则的方式落地。







请到「今天看啥」查看全文