正文
此外,Phylowave还通过多项创新实现了更高的分析效率和适应性。例如,研究中使用了一种广义加性模型(generalized additive model),动态分区系统发生树以捕捉适应性增强谱系的出现时间点。对于每个谱系,Phylowave还通过多项逻辑模型(multinomial logistic models)估算其相对适应性,从而量化其在种群中的传播潜力。
该方法的优势在多病原体研究中得到了验证。例如,在分析SARS-CoV-2时,Phylowave成功地识别了Alpha、Delta和Omicron等已知变异株,并准确捕捉了这些谱系的适应性变化。对于百日咳杆菌和结核分枝杆菌等较少研究的病原体,Phylowave还发现了新的适应性谱系,尤其是在疫苗压力和抗生素耐药性背景下。这表明Phylowave能够处理数据采样不均和时间跨度较大的基因组数据,展现了极高的稳定性。
更重要的是,Phylowave并非仅限于检测谱系变化,其分析结果还能够直接指导公共卫生行动。例如,通过识别特定基因突变与适应性增强的关联,Phylowave为新疫苗开发和靶向治疗策略提供了关键信息。此外,其实时分析能力使得研究人员可以在新变异株传播初期就发出预警,从而赢得宝贵的应对时间。
通过追踪指数动态解析种群组成的变化
(Credit:
Nature
)
这一部分以时间分辨的系统发生树(time-resolved phylogenetic tree)为例,说明指数计算的基本概念。图中展示了一个背景种群(灰色)和一个新兴谱系(绿色)的演化过程。
左图:时间分辨系统发生树,显示了新兴谱系与背景种群之间的分化。
中图:以节点A和节点B为起点,计算它们与种群中其他节点的成对距离分布(pairwise distance distribution),并以蓝色虚线表示几何加权(geometric weighting)。这种加权方法有助于突出近期的种群动态变化。
右图:显示了新兴谱系的指数动态随时间的变化趋势,并通过模型预测其预期的指数变化。
通过Phylowave方法,对四种病原体(SARS-CoV-2、H3N2、百日咳杆菌和结核分枝杆菌)的指数动态进行了分析:
(b) SARS-CoV-2:分析了病毒不同谱系的指数动态,识别出了已知的主要变异株(如Alpha和Omicron)。不同颜色表示不同谱系的指数动态。
(c) H3N2流感病毒:展示了流感病毒不同谱系(如3C.2a1b.1b)的指数变化,说明了抗原漂移对谱系动态的影响。
(d) 百日咳杆菌:发现了多个新兴谱系,这些谱系表现出明显的适应性增强,与疫苗压力密切相关。
(e) 结核分枝杆菌:揭示了其谱系的长期稳定性,但同时发现了少数适应性更强的新谱系。
SARS-CoV-2:从Alpha到Omicron的演化轨迹
新冠病毒(SARS-CoV-2)的进化速度和适应能力为现代公共卫生带来了前所未有的挑战。从最初的Alpha变异株(B.1.1.7)到后续的Delta(B.1.617.2)和Omicron(BA.*)谱系,每一波主要变异的出现都伴随着传播能力的增强或免疫逃逸的提高。利用Phylowave分析,研究人员精确追踪了这些谱系的演化轨迹,揭示了关键突变对病毒适应性的影响。例如,Omicron谱系中的刺突蛋白发生了一系列氨基酸替换,显著提高了病毒对人类细胞的结合效率,同时减弱了抗体中和作用。这些基因变异不仅推动了病毒在全球的快速传播,也对现有疫苗的有效性构成了威胁。
Phylowave还表明,SARS-CoV-2的进化并非线性过程,而是多个谱系同时存在并竞争适应性。在不同地域的分析中,该方法成功捕捉到局部流行的变异株,例如在非洲流行的Eta(B.1.525)和在欧洲传播的EU1谱系。这些发现为疫情防控措施的区域优化提供了科学依据。
相比于SARS-CoV-2,H3N2流感病毒的演化显得更加平稳但同样复杂。作为导致季节性流感的主要病原体之一,H3N2的进化主要体现在抗原漂移(antigenic drift),即表面抗原区域的渐进性突变。研究显示,H3N2的适应性增强与其血凝素(haemagglutinin, HA)基因中的关键位点变化密切相关,特别是在抗原结合域(receptor-binding domain, RBD)。