专栏名称: 算法与数学之美
从生活中挖掘数学之美,在实践中体验算法之奇,魅力旅程,从此开始!
目录
相关文章推荐
算法与数据结构  ·  Cursor 1.0 ... ·  昨天  
算法爱好者  ·  马云罕见回应!阿里 15 ... ·  昨天  
九章算法  ·  「九点热评」谷歌正式冻结招聘! ·  23 小时前  
九章算法  ·  微软猛发offer!杀疯了! ·  昨天  
51好读  ›  专栏  ›  算法与数学之美

瞎扯数学分析-微积分(1~4)

算法与数学之美  · 公众号  · 算法  · 2017-04-15 22:03

正文

请到「今天看啥」查看全文




第二个重要改进是1748年欧拉在《无穷小分析引论》中给出的函数定义:变量的函数是一个解析表达式,它是由这个变量和一些常量以任何方式组成的。现代函数的符号就是欧拉发明的。欧拉还区分了显函数和隐函数、单值函数和多值函数、一元函数和多元函数等。

1775年,欧拉在《微分学》一书中,给出了函数的另一定义:如果某些变量,以这样一种方式依赖于另一些变量,即当后者变化时,前者也随之变化,则称前面的变量为后面变量的函数。这个定义,为辩证法数学化打开了大门。

第三次重要改进是从函数的几何特性开始的,是1746年达朗贝尔给出的,把曲线称为函数(因为解析表达式在几何上表示为曲线)。但是后来欧拉发现有些曲线不一定是由单个解析式给出的,因此提出了一个新的定义:平面上随手画出来的曲线所表示的x与y的关系。即把函数定义为由单个解析式表达出的连续函数,也包括由若干个解析式表达出的不连续函数(不连续函数的名称是由欧拉提出的)。

在整个十八世纪,函数定义本质就是一个解析表达式(有限或无限)。

第四次最重要的改进是1821年柯西在《解析教程》中,给出了如下函数定义:在某些变量间存在着一定的关系,当一经给定其中某一变量的值,其他变量的值也随之确定,则将最初的变量称为自变量,其他各个变量称为函数。这个定义把函数概念与曲线、连续、解析式等纠缠不清的关系给予了澄清,也避免了数学意义欠严格的变化一词。函数是用一个式子或多个式子表示,甚至是否通过式子表示都无关要紧。

不过函数精确定义是德国人狄利克里于1837年给出的:若对x(a≤x≤b)的每一个值,y总有完全确定的值与之对应,不管建立起这种对应的法则的方式如何,都称y是x的函数。这一定义彻底地抛弃了前面一些定义中解析式的束缚,强调和突出函数概念的本质,即对应思想。

对应思想是人类伟大的发现,后来的映射,同构,同态等等概念来源于此,这是这个概念最伟大的地方。

当然我们知道狄利克里伟大,主要不是他给出函数的科学定义,而是他给出了著名的狄利克里函数,这个函数是难以用简单的包含自变量x的解析式表达的,但按照上述定义的确是一个函数。

为使函数概念适用范围更加广泛,人们对函数定义作了如下补充:“函数y=f(x)的自变量,可以不必取[a,b]中的一切值,而可以仅取其任一部分”,换句话说就是x的取值可以是任意数集,这个集合中可以有有限个数、也可以有无限多个数,可以是连续的、也可以是离散的。这样就使函数成了一个非常广泛的概念。但是,自变量及函数仍然仅限于数的范围,而且也没有意识到“函数”应当指对应法则本身。

最后,我们要说说现代数学理解的函数(来自于美国人维布伦):设集合X、Y,如果X中每一个元素x都有Y中唯一确定的元素y与之对应,那么我们就把此对应叫做从集合X到集合Y的映射,记作f:X-->Y,y=f(x)。

不过从布尔巴基以后,基于数学结构的函数概念更进一步抽象,从函数、映射进化到关系:

1939年布尔巴基用集合之间的关系定义了函数:设E和F是两个集合,E中的每一个元素x和F中的每一个元素y之间的一个关系f称为函数,如果对每一个x∈E,都存在唯一的y∈F,它们满足给定的关系。记作f:E→F。在布尔巴基的定义中,E和F不一定是数的集合,函数是集合之间的一个关系。也即设集合E和F,定义E与F的积集E*F如下:E*F={(x,y)|x∈ E,y∈ Y}。积集E*F中的一个子集f称为E与F的一个关系,若(x,y)∈ f,则称x与y有关系f,记为xfy,若(x,y)不属于f,则称x与y无关系f。设f是x与y的关系,即f∈X*Y,如果(x,y)∈f,(x,z)∈f ,必有y=z,那么称f为X到Y的映射或函数。

这个定义回避了对应这种模糊不清的描述语言,而且把函数从单纯的数的概念推广到一切对象,例如结构,图像,集合等等。

不过微积分要处理的函数概念还是原始的,甚至只能处理初等函数。特点就是函数自变量的变化范围是数域,也即函数定义域与因变量的变化范围值域都是数域。这就是微积分的工作对象。这个对象可以描述一部分基于初等函数规律描述的变量跟结果的因果关系,通过对这种因果关系的分析和计算,人类就能预测或控制符合相应初等函数规律描述的事件或事物的因果关系,例如各种工程设备,武器系统等等,就能建立工业文明。



2、极限



极限是微积分的主要工作技巧。整个数学分析就是建立在极限概念上(包括级数)来处理初等函数因果关系的一门学科。

极限技巧一般是:对无法把握的连续变量,用可以计算的序列(例如数列,时间序列,多项式序列等等)逐步逼近变量,并能够证明这些序列可以无限逼近所求的未知量,然后计算这个序列的极限就可得到变量。

极限思想是微积分的基本思想,函数的连续性,导数以及定积分等等都是借助于极限来定义的。

所以可以说:数学分析就是用极限思想来研究函数的一门学科。

极限的思想在刘徽割圆术就有了,但是仅仅是一种计算方法,而不是一个思维方式。真正的现代极限思想来自于16世纪荷兰人斯泰文计算三角形重心过程中,用逐步逼近方式逼近重心。

牛顿和莱布尼茨最早并不是用极限思想来建立微积分的,他们的概念基础是无穷小,但是由于无穷小是个逻辑上有瑕疵的概念,导致微积分的逻辑基础无法自洽。例如牛顿用路程的改变量ΔS与时间的改变量Δt之比ΔS/Δt表示运动物体的平均速度,让Δt无穷小,得到物体的瞬时速度,并由此引出导数概念和微分,他并没有极限概念,他说:“两个量和量之比,如果在有限时间内不断趋于相等,且在这一时间终止前互相靠近,使得其差小于任意给定的差,则最终就成为相等”。这是一种几何直观而不是逻辑,就像小孩在纸上顺便划一下圆,就说是太阳。所以牛顿说不清楚他理解的无穷小到底是是什么。其实牛顿的说法如果用极限概念,很容易在逻辑上说清楚:如果当变量(例如时间t)无限增大或变量的差无限接近0时(Δt-->0),则ΔS/Δt无限地接近于常数A,那么就说ΔS/Δt以A为极限,这个极限就是s(路径函数)在t0时的导数。

不过上述无限的概念仍然是几何直观的,并没有用逻辑描述出无限这个过程是什么,也没有定量地给出ΔS和Δt两个无限过程之间的数量联系,所以在逻辑上仍然有漏洞。

所以牛顿和莱布尼兹的微积分不断收到怀疑和攻击,例如最常见的质疑是贝克莱大主教的:在瞬时速度概念中,究竟Δt是否等于零?如果说是零,怎么能用它去作除法呢?如果它不是零,又怎么能把包含着它的那些项去掉呢?这就是数学史上所说的无穷小悖论。

牛顿由于没有极限概念,无法回答这种质疑,只能混战。主要原因是微积分起源于人类计算需要从常量扩展到变量,但是牛顿采用处理常量的传统思想来处理变量。

18世纪,罗宾斯、达朗贝尔与罗依里埃等人明确表示极限是微积分严格化的基础。其中最接近现代定义的是达朗贝尔的极限定义:一个量是另一个量的极限,假如第二个量比任意给定的值更为接近第一个量。但是这些定义都无法摆脱对几何直观的依赖。例如什么叫“接近”,逻辑上的含义是什么,其实还是几何直观。







请到「今天看啥」查看全文