正文
信用卡审核简易流程图
从流程上看,银行的信用审核,是以风控评分卡模型的自动审核为主,以人工审核为辅的模式,在需要特定审核的环节由人工进行,比如验证你的工作、校验你联系人的真实性等。这也是为什么在现实生活中一部分人在信用卡申请过程中会收到人工审核电话,一部分人并不需要该验证环节即可获得信用卡。
从审核数据上看,对于银行来说,影响审批额度的主要因素包括客户基本特征(包括男女、年龄、教育程度等等)、客户的风险暴露情况(社会收入、债务情况、还债能力综合评估)、现有的社会表现(房贷还款情况、其他银行信用卡使用情况等)。
不管是中资还是外资银行,大致都遵循了这样一套风险评估和信用审核的逻辑。对比之下,就可以看出,时下互联网金融鼓吹的大数据风控在原理和方法论上跟传统金融的风险控制并没有本质区别。
市场空白给予机会以数据相关性替代因果关系
大数据风控相对于传统风控来说,建模方式和原理其实是一样的,其核心是侧重在利用更多维的数据,更多互联网的足迹,更多传统金融没有触及到的数据。比如电商的网页浏览、客户在app的行为轨迹、甚至GPS的位置信息等,这些信息看似和一个客户是否可能违约没有直接关系,但实则通过大量的数据累积,能够产生出非常有效的识别客户的能力。
大数据风控与传统银行风控的比较
数据量大是大数据风控一直宣传的活字招牌,至于多少的数据量级才能算得上大,业内一直没有统一或者较为通用的标准。 根据公开资料,蚂蚁金服的风控核心CTU 投入了2200多台服务器,专门用于风险的检测、分析和处置。新华网的报道显示,蚂蚁金服每天处理2亿条数据,数据维度有10万多个。京东金融2016年6月,投资了美国的大数据公司ZestFinance,之后还与其联合发起成立了合资公司ZRobot。ZRobot主要定位在为互金企业提供数据建模、信用评分、资产定价、欺诈识别等服务。京东金融依靠中国最大的电商-京东的数据量,在国内已算大数据拥有者。
聚秀资本合伙人江南愤青表示,按照惠普副总裁提及的大数据概念,全球有能力进行所谓的大数据应用的公司不超过50家。大量的公司只是在做数据的优化,根本不能称之为大数据风控。
在数据维度这个层级,传统金融风控和大数据风控还有一个显著的区别在于传统金融数据和非传统金融数据的应用。传统的金融数据包括我们上文中提及的个人社会特征、收入、借贷情况等等。而互金公司的大数据风控,采纳了大量的非传统金融数据。比如阿里巴巴的网购记录,京东的消费记录等等。