专栏名称: 网易科技
网易科技频道,有态度的科技门户。
目录
相关文章推荐
51好读  ›  专栏  ›  网易科技

谷歌教AI画画:会让它像人类那样思考吗?

网易科技  · 公众号  · 科技媒体  · 2017-06-09 18:40

正文

请到「今天看啥」查看全文



这是谷歌的AI软件的运作模式。谷歌开发了一款名为“Quick, Draw!”的游戏,在人们玩该款游戏时,它会生成一个涵盖人类各种各样的绘图(如猪、雨、救火车、瑜伽动作、花园和猫头鹰)的庞大数据库。


当我们画的时候,我们是将丰富多彩、熙熙攘攘的世界压缩成少数的一些线条或者笔画。正是这些简单的笔画构成了SketchRNN底层的数据集。借助谷歌开源的TensorFlow软件库,每一种绘图——猫,瑜伽动作,雨——都能够用于训练一种特定的神经网络。这有别于引起媒体广泛报道的那种基于照片的绘图系统,比如机器能够渲染出梵高或者原来的DeepDream风格的照片,又或者能够画出任何的形状,然后给它填充“猫的特征”。


这些项目都让人类觉得很不可思议。它们相当有趣,因为它们所产生的图像看起来就像来自人类对现实世界的观察,尽管不完全像。


像人那样用绘图表达所看到的东西


然而,SketchRNN的输出作品一点都称不上不可思议。“它们感觉很真实,”艾克说,“我不想说‘很像人类的作品,’但它们感觉很真实,那些像素生成工具则不然。”


这是Magenta团队的核心洞见。“人类……并不是把世界当成一个像素网格去理解,而是发展出抽象的概念去表示我们所看到的东西。”艾克和大卫·哈在描述其工作的论文中写道,“我们从小时候就能够通过用铅笔或者蜡笔在纸上绘画来传达我们所看到的东西。”


如果人类能够做到这一点,那谷歌会希望机器也能够做到。去年,谷歌CEO桑达尔·皮查伊(Sundar Pichai)称他的公司“以人工智能为先”。对于谷歌来说,AI是其“将全世界的信息组织起来,使之随处可得,随处可用”初始使命的一种自然而然的延伸。现在不同的地方在于,信息由人工智能来组织,然后使得它们能为广大用户使用。Magenta是谷歌组织和理解一个特定的人类领域的疯狂尝试之一。


机器学习是谷歌所采用的各种工具最广泛的一个概念。它是通过编程让计算机自学如何执行各种不同的任务的一种方式,常见的方式是给计算机注入标签数据来进行“训练”。进行机器学习的一种热门方式是,借助以人脑的连接系统为原型的神经网络。不同的节点(人工神经元)会相互连接,它们有着不同的权重,会响应部分输入信息,但不响应其它的输入信息。


近年来,多层级神经网络被证明在解决棘手的问题上非常成功,尤其是在翻译和图像识别/操纵上。谷歌在这些新架构上重新构建了很多的核心服务。这些神经网络模拟人类大脑的运作过程,其互相连接的层可识别输入信息(比如图像)不同的模式。低级别的层可能含有响应光明与黑暗简单的像素级模式的神经元。高级别的层则可能会响应狗的脸、汽车或者蝴蝶。


构建带有这种架构和机制的网络会带来不可思议的成效。原本极其困难的计算难题变成了调整模型的训练,然后让一些图形处理单元运算一会的问题。正如吉迪恩·刘易斯-克劳斯(Gideon Lewis-Kraus)在《纽约时报》所描述的,谷歌翻译(Google Translate)曾是一个开发超过10年的复杂系统。该公司后来利用深度学习系统仅仅花了9个月就重新构造了一个谷歌翻译系统。“该AI系统一夜之间就有了巨大的提升,这种提升相当于老系统在整个生命周期积累的全部提升。”刘易斯-克劳斯写道。


正因为此,神经网络的使用量和类型呈现井喷式增长。SketchRNN方面,他们使用可处理输入序列的递归神经网络。他们用人们画各种不同的东西时连续画下的笔画来训练该网络。







请到「今天看啥」查看全文