专栏名称: 机器之心
专业的人工智能媒体和产业服务平台
目录
相关文章推荐
51好读  ›  专栏  ›  机器之心

盘点 | 机器学习入门算法:从线性模型到神经网络

机器之心  · 公众号  · AI  · 2017-03-10 13:17

正文

请到「今天看啥」查看全文



机器学习是人工智能(artificial intelligence)的一种,其本质上讲,就是计算机可以在无需编程的情况下自己学习概念(concept)。这些计算机程序一旦接触新的数据,就将会改变它们的「思考」(或者输出)。为了实现机器学习,算法是必需的。算法被写入计算机并在其剖析数据时给与其需要遵循的规则。


机器学习算法经常被用于预测分析。在商业中,预测分析可以用于告诉企业未来最有可能发生什么。例如,使用预测分析算法,在线 T 恤零售商可以使用当前的数据来预测下个月他们将会售出多少 T 恤。


回归或分类


虽然机器学习也可以用于其它的用途,但是我们将在本指南中着重于预测。预测是一种基于输入变量来估计输出变量的过程。比如,如果我们输入特定房子的特征,则可以预测售价。


预测问题分为两大类:


  • 回归问题(Regression Problems):我们想要预测的变量是数字(例如,房子的价格)

  • 分类问题(Classification Problems):我们想要预测的变量是「是/否」的答案(例如,某一设备是否会经历设备故障)


现在我们已经介绍了机器学习在预测方面的应用,我们可以讨论机器学习算法,其分为 3 个组别:线性模型(linear models)、树型模型(tree-based models)、和神经网络(neural networks)。


什么是线性模型算法



线性模型使用简单的公式通过一组数据点来查找「最优拟合」线。通过你已知的变量方程(比如,原料),你可以求出你想要预测的变量(例如,烘烤蛋糕需要多长时间)。为了求出预测量,我们输入已知的变量得到答案。换句话说,为了求出烘烤蛋糕需要多长时间,我们只需要输入原料。


例如,要烘烤蛋糕,分析过后我们得到这个方程:t = 0.5x + 0.25y,其中 t 烤蛋糕的时间,x 为蛋糕糊的重量,y = 1 表示为巧克力蛋糕而 0 表示为非巧克力蛋糕。所以让我们假设,我们有 1kg 的蛋糕糊并且我们想要一个巧克力蛋糕,我们输入我们的数字来建立这个方程:t = 0.5(1) + (0.25)(1) = 0.75,即 45 分钟。


有不同形式的线性模型算法,我们将要讨论线性回归(linear regression)和逻辑回归(logistic regression)。







请到「今天看啥」查看全文