正文
极客公园:
人工智能如果想进入更高级的水平,您觉得下一个要做的工作是什么?比如说我们人类比较重要的是处理一些隐性的知识,还有情感的问题,下一步人工智能在这个方面会不会有更多的提高?
杨强:
情感问题也可以按理性的方式来处理,我们可以去检测处理的效果是否符合人的情感。但其实情感问题并不是机器学习目前的首要问题,首要问题是建立一个通用的机器学习系统。现阶段还没有出现非常强的通用系统,主要原因是现阶段机器学习的成功主要集中在大数据上面,我们知道,大数据比较多的地方是比较垂直的领域,这些领域的特点是范围比较窄,远远没有达到通用性。所以机器学习包括情感计算的瓶颈是,我们如何能把通用领域里用户在系统里的交互行为用数字化的形式留下来。这个瓶颈的解决办法需要传感器网络或者物联网的普及,带来更多的数据的流通。
极客公园:
您觉得目前国内人工智能领域的发展情况如何?最大的不足是什么?您对国内人工智能科研人员及创业公司有哪些建议?
杨强:
国内目前人工智能发展还是相当乐观的,很多大学都在研究人工智能。但与国外相比,国内的不足之处也比较明显,国内过多去做机器学习,而忽略了人工智能的其他领域,比如逻辑推理、智能规划、机器学习的可解释性和多智能体等前沿领域。
如果是对人工智能科研人员的建议,我觉得国内的人工智能研究不能太跟风,要对自己的研究领域有信心、不断创新,尤其是在大学的研究者,每个大学的教授应该是独树一帜的,自己领先一个子领域,而不是跟着别人去做。其实在科研和工业界都是需要持续创新力的,不过对公司而言,还是要首先考虑生存,也不要以为人工智能可以包罗万象。
极客公园:
您目前担任人工智能初创企业第四范式的首席科学家,作为一家人工智能技术提供商,你们提到自己是「全球第一个商用人工智能系统的架构、中国最大的人工智能系统研发和运营」。同时,你们也称自己的产品「先知」也是人工智能领域第一个平台级产品。如何理解「平台级产品」这个概念?
杨强:
以前基于云端的机器学习在大众化的应用不多,机器学习大部分都是单机的,缺点是需要客户把大批数据上传,这对于客户来说是一个隐私流失,是很多客户所不希望看到的。为了避免数据流失,一些有条件的客户会做本地的数据中心,这需要非常大的投入,包括资源、资金和人力的投入。但很多客户、尤其是互联网公司,他们真正关心的其实不是建立这样的 IT 小组或者数据中心,而是怎么利用人工智能来提升自己的业务。那么如何帮助他们解决数据上传问题、满足机器学习在业务方面的需求呢?「部署即可用」的平台级产品就变得非常重要。在云上就可以快速完成从问题定义、数据接入、特征工程直至上线应用的整个机器学习流程。第四范式的先知公有云版就是这样一个平台,利用先知公有云版企业不需要再重建机器学习团队,现有团队一个月内就能搭建出自己适用的 AI 系统。这极大降低了机器学习的门槛,同时能使得大家把精力放在自己的业务上。
极客公园:
现在有说法说「国内的人工智能产业链将更为明显地分化为以 BAT 为代表的生态平台、以科大讯飞和格灵深瞳为代表的垂直技术解决平台等。」您怎么看人工智能公司的几种不同类型的路线选择?第四范式目前正在走哪种路线?
杨强:
第四范式走了第三条路。第四范式不像 BAT 或者电商那么宽泛,要打造自己的生态;同时也没有只追求纵向的专业领域突破,而忽略了横向的业务延展。第四范式在一个垂直领域扎得很深,了解这个领域的痛点和背景,然后基于实战经验与案例来提供一个领域内的通用平台,同时这个平台又在该领域做得比较成功,提供的算法都是特别适用于领域里的。比如大规模的自动特征工程就是一个例子,用很少的人工就可以自动获取大量特征,然后就自动进行机器学习,最终实现人工智能在个性化推荐、精准营销等业务场景中的应用。所以可能用第三个路径来描述第四范式可能更恰当。
极客公园:
怎么看目前人工智能技术在 C 端的应用情况,比如智能家居?
杨强:
智能家居一直以来都是大家关心的题目,工业界诸如小米、联想等企业都试图在这个领域有所突破。我觉得技术上应该问题不大,但还没有抓住很好的场景。好场景的要求是,可以提供高质量的数据,数据要持续不断地更新,而且场景要一直向客户提供反馈,总的来说就是不断地提供数据和数据反馈标注。所以,如果能够找到一个好的场景,有这样的数据,更大的突破应该是早晚的事。但除非找到这样的场景,否则只能做一个好的框架,没有数据和服务,智能家居很难取得重大突破。
极客公园:
您个人这两年在国内参加了很多人工智能方面的创业项目,相比纯粹的科研工作,您会觉得参与企业的创业对这个行业更有帮助吗?
杨强:
我觉得这两者一定要结合起来,实验室的工作和接触大规模的工业问题是不可分割的。在实验室工作、参加学术会议或者拜访一些其它的实验室,可以关注整个业界的发展;在工业界,可以解除人工智能在应用上所产生的很多实际问题。现在这个时代离不开数据,在人工智能领域,实验室和工业的结合是双向有益的。
下附杨强教授于 2016 腾讯网媒体高峰论坛现场的演讲内容:
大家好!今天我很高兴能够跟大家分享一下我的一些看法,尤其是人工智能的到来和媒体会怎么发展的技术路径。
今年 AlphaGo 是一个大事件,我们现在要问,AlphaGo 为我们带来了什么?从技术和商业上、从未来的发展方向上,能不能从 AlphaGo 的发展看出一些端倪?
首先我们看到在过去人工智能的发展经历了几次大事件。首先是 IBM 深蓝、沃森为我们带来了很大的惊喜,告诉我们计算能力真的是很重要。有了这种计算能力,我们就能够比人搜索的要深,比你回答的要快,能够回答一些尝试性的任务。