正文
16. 如何在 2d NumPy 数组中交换两个列?
难度:L2
问题:在数组 arr 中交换列 1 和列 2。
arr = np.arange(9).reshape(3,3)
arr
17. 如何在 2d NumPy 数组中交换两个行?
难度:L2
问题:在数组 arr 中交换行 1 和行 2。
arr = np.arange(9).reshape(3,3)
arr
18. 如何反转 2D 数组的所有行?
难度:L2
问题:反转 2D 数组 arr 中的所有行。
# Input
arr = np.arange(9).reshape(3,3)
19. 如何反转 2D 数组的所有列?
难度:L2
问题:反转 2D 数组 arr 中的所有列。
# Input
arr = np.arange(9).reshape(3,3)
20. 如何创建一个包含 5 和 10 之间随机浮点的 2 维数组?
难度:L2
问题:创建一个形态为 5×3 的 2 维数组,包含 5 和 10 之间的随机十进制小数。
21. 如何在 Python NumPy 数组中仅输出小数点后三位的数字?
难度:L1
问题:输出或显示 NumPy 数组 rand_arr 中小数点后三位的数字。
输入:
rand_arr = np.random.random((5,3))
22. 如何通过禁用科学计数法(如 1e10)打印 NumPy 数组?
难度:L1
问题:通过禁用科学计数法(如 1e10)打印 NumPy 数组 rand_arr。
输入:
# Create the random array
np.random.seed(100)
rand_arr = np.random.random([3,3])/1e3
rand_arr
#> array([[ 5.434049e-04, 2.783694e-04, 4.245176e-04],
#> [ 8.447761e-04, 4.718856e-06, 1.215691e-04],
#> [ 6.707491e-04, 8.258528e-04, 1.367066e-04]])
期望输出:
#> array([[ 0.000543, 0.000278, 0.000425],
#> [ 0.000845, 0.000005, 0.000122],
#> [ 0.000671, 0.000826, 0.000137]])
23. 如何限制 NumPy 数组输出中项的数目?
难度:L1
问题:将 Python NumPy 数组 a 输出的项的数目限制在最多 6 个元素。
输入:
a = np.arange(15)
#> array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
期望输出:
#> array([ 0, 1, 2, ..., 12, 13, 14])
24. 如何在不截断数组的前提下打印出完整的 NumPy 数组?
难度:L1
问题:在不截断数组的前提下打印出完整的 NumPy 数组 a。
输入:
np.set_printoptions(threshold=6)
a = np.arange(15)
a
#> array([ 0, 1, 2, ..., 12, 13, 14])
期望输出:
a
#> array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
25. 如何向 Python NumPy 导入包含数字和文本的数据集,同时保持文本不变?
难度:L2
问题:导入 iris 数据集,保持文本不变。
26. 如何从 1 维元组数组中提取特定的列?
难度:L2
问题:从前一个问题导入的 1 维 iris 中提取文本列 species。
输入:
url = https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data
iris_1d = np.genfromtxt(url, delimiter= , , dtype=None)
27. 如何将 1 维元组数组转换成 2 维 NumPy 数组?
难度:L2
问题:忽略 species 文本字段,将 1 维 iris 转换成 2 维数组 iris_2d。
输入:
url = https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data
iris_1d = np.genfromtxt(url, delimiter= , , dtype=None)
28. 如何计算 NumPy 数组的平均值、中位数和标准差?
难度:L1
问题:找出 iris sepallength(第一列)的平均值、中位数和标准差。
url = https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data
iris = np.genfromtxt(url, delimiter= , , dtype= object )
29. 如何归一化数组,使值的范围在 0 和 1 之间?
难度:L2
问题:创建 iris sepallength 的归一化格式,使其值在 0 到 1 之间。
输入:
url = https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data
sepallength = np.genfromtxt(url, delimiter= , , dtype= float , usecols=[0])
30. 如何计算 softmax 分数?
难度:L3
问题:计算 sepallength 的 softmax 分数。
url = https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data
sepallength = np.genfromtxt(url, delimiter= , , dtype= float , usecols=[0])
31. 如何找到 NumPy 数组的百分数?
难度:L1
问题:找出 iris sepallength(第一列)的第 5 个和第 95 个百分数。
url = https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data