专栏名称: 测了么
感谢关注一站式全流程测试共享平台——测了么官方订阅号!在这里,我们将定期为大家推送最新的测试服务信息、最有料的测试行业干货、测试前沿资讯 ,以及各种测试相关有趣、有用的内容!
目录
相关文章推荐
天津市应急管理局  ·  滨海新区开展安全宣传咨询日活动 ·  昨天  
吉安公安  ·  "怪鸟"撞杆受伤,民警一查来头不小…… ·  昨天  
51好读  ›  专栏  ›  测了么

2017最具潜力20大新材料

测了么  · 公众号  ·  · 2018-01-02 10:55

正文

请到「今天看啥」查看全文


过渡金属硫化物(TMDC)低成本、具有简单二维结构,是可比肩石墨烯的超级创新材料。过渡金属硫化物通常由钼或钨形成,例如硒或者碲与硫元素构成。它们具有相当简单的二维结构。由于其相对成本较低,并且更易于制成非常薄而稳定的图层,同时具有半导体特性,因此过渡金属硫化物(TMDC)也成为光电子学领域的理想材料。


发展趋势: 数字电子领域。如果电子和真空洞被从一个外部环路注入过渡金属硫化物,当它们相遇时就会再次组合然后释放光子。这种光电相互转化的能力使得过渡金属硫化物有望被用于利用光传输信息、用作微小的低功率光源,甚至激光。


主要研究机构(公司): 中国科学技术大学、北京航空航天大学、中国石油大学、中国石油天然气集团公司催化重点实验室等。



突破性: 超轻,99.99%部分都是空气,表观密度为0.9g/cm3,是一种合成的多孔极轻3D开放式蜂窝聚合物结构金属材料,具有声学、振动和冲击能量抑制,非常坚硬,压缩50%张力之后能够完全恢复,具有超级高能量吸收能力。


发展趋势: 电池电极、催化剂载体,未来航空飞行器制造,微格金属材料可以确保美国宇航局降低深太空探索航天器40%质量,这对于未来旅行至火星和其它星球至关重要。


主要研究机构(公司): Boeing。



突破性: 单层锡原子构成的厚度小于0.4纳米的二维晶体——锡烯,可在常温下达到100%导电率的超级材料,其导电性只存在于材料的边缘或表面,而不是内部。当拓扑绝缘体只有一层原子厚的时候,它的边缘导电性就会达到完美的100%。远胜近年来热议的石墨烯,可实现室温下无能量损耗的电子输运。


发展趋势: 更高集成度的电子学器件应用方面具有重要的意义。


主要研究机构(公司): 美国能源部SLAC国家加速实验室、斯坦福大学,德国维尔茨堡大学,上海交通大学,清华大学。



突破性: 美国宾州州立大学研究人员选择了一种电子间相互作用大于其动能的材料,由于电子强关联作用,电子能“感觉”到彼此,从而使其性质类似于“液体”,而不是没有相互作用的“气体”。这种电子“液体”仍然非常导电,但是可见光波段的反射却大大降低,从而提高了透明度。


发展趋势: 在光学透明性、导电性和易于制造上有望替代传统的透明导电材料——铟锡氧化物ITO,将被广泛应用于智能手机触摸屏、平板显示器等显示领域。


主要研究机构(公司): 美国宾州州立大学、无锡力合光电传感技术有限公司等。



突破性: 碳化硅、氮化镓、氧化锌、氮化铝等宽紧带半导体材料。具有宽的禁带宽度,高的击穿电场,高的热导率,高的发光效率,高的电子饱和速率及高的抗辐射能力。更适用于制作高温高频、抗辐射及大功率器件。


发展趋势: 更高集成度的电子器件,光电子器件、电力电子器件,蓝光LED,OLED,照明、新能源汽车、导弹、卫星等。


主要研究机构(公司): 罗姆、三菱电机、松下电器,Cree、Bandgap、DowDcorning、II-VI、Instrinsic,日本的Nippon、Sixon,芬兰的Okmetic,德国的SiCrystal,TDI、Kyma、ATMI、Cree,日亚(Nichia)、Matsushita、索尼(Sony)、东芝(Toshiba)。







请到「今天看啥」查看全文