正文
【例】
果园里桃树的棵数是杏树的3倍,而且桃树比杏树度124棵,求杏树和桃树各有多少棵?
解:
先求杏树有多少棵——124÷(3-1)=62(棵)
再求桃树有多少棵——62×3=186(棵)
【含义】
有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出倍数,再用倍比方法算出要求的数。
【数量关系】
总量A÷数量A=倍数
数量B×倍数=总量B
【
解题思路】
先求出倍数,再利用倍比关系求解。
【例】1
00千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?
解:先求倍数,3700千克是100千克的多少倍——3700÷100=37(倍)
再求可以榨油多少千克——40×37=1480(千克)
综合算式:40×(3700÷100)=1480(千克)
【含义】
两个运动的物体同时由两地出发相向而行,在途中相遇的问题。
【数量关系】
相遇时间=总路程÷(甲速+乙速)
总路程=(甲速+乙速)×相遇时间
【解题思路】
简单题目直接套用上述公式,复杂题目变通后再套用公式。
【例】
南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,问经过几小时两船相遇?
解:直接套用公式392÷(28+21)=8(小时)
【含义】
两个运动物体在不同地点同时出发(或者 在同一地点不同时出发,或者在不同地点不同时出发)作相向运动。在后面的行进速度快,在前面的行进速度慢,在一定时间内,后者追上了前者的问题。
【数量关系】
追及时间=追及路程÷(快速-慢速)
追及路程=(快速-慢速)×追及时间
【解题思路】
简单题目直接套用上述公式,复杂题目变通后再套用公式。
【例】
好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?
解:先求劣马先走了多少千米——75×12=900(千米)
再求好马几天能追上——900÷(120-75)=20(天)
综合算式:75×12÷(120-75)=900÷45=20(天)
【含义】
按相等的距离,在距离、棵距、棵数这三个量之间,已知其中两个量,求第三个量的问题。
【数量关系】
线性植树 棵数=距离÷棵距+1
环形植树 棵数=距离÷棵距
方形植树 棵数=距离÷棵距-4
三角形植树 棵数=距离÷棵距-3
面积植树 棵数=面积÷(棵距×行距)
【解题思路】
先弄清是哪种植树问题,再套用公式。
【例
】一条河堤136米,每隔2米栽一棵柳树,头尾都栽,一共要栽多少棵柳树?
解:直接套用“线性植树”公式——
136÷2+1=68+1=69(棵)
【含义】
已知一个人的年龄,根据已知条件求另一个人的年龄。
【数量关系】两人年龄差不变。