正文
非常高兴看到白仁仁教授和段宏亮教授将
Artificial Intelligence in Drug Discovery
翻译为《人工智能药物研发》,并由科学出版社出版,这将方便国内读者了解和学习AI药
物
研发技术和行业发展的最新动态。
本书着眼于AI、机器学习和深度学习在药
物研发中的应用,系统介绍了如何应用上述方法来加速并彻底改变传统的药物设计模式。
徐峻教授
序言:
纵观药物发现方法学演化的历史,科学和技术是驱动药物发现方法进步的两大引擎。探求药物作用机制的好奇心促进了技术创新,而新技术发明则催化了科学发现,同时科学与技术活动也受经济规律的制约。
计算技术领域具有摩尔定律,有趣的是,药物发现领域具有反摩尔定律:1950年以来,每10亿美元研发支出中批准的新药数量大约每9年减半。这使得药物发现技术难以持续。为了破解这一反摩尔定律的魔咒,研究人员采取了各种措施,如扩大药物筛选的范围、拓展药物靶点的概念及开发多种生物药物。
发展AI辅助药物发现(AIDD)技术是药物发现领域为了突破反摩尔定律的最新努力。
美国学者Alexander Heifetz主编
Artificial Intelligence in DrugDesign
一书的面世,可以说是恰逢其时。我国青年学者白仁仁教授主译、段宏亮教授主审,科学出版社出版的该书中文版《人工智能药物研发》将有助于推动AIDD在我国的应用与发展。
《人工智能药物研发》是一本全面介绍AI在药物发现领域中应用的专著,共23章,涵盖了AI(特别是机器学习)在药物研发中应用的主要方面。不仅探讨了各种技术的原理,还深入剖析了AI技术在药物研发中的应用案例。
我相信,该书可作为AIDD的入门向导,也可作为本领域科学技术工作者的工具书,对从事药物研发的科研机构和企业都将大有裨益。
原著作者序:
新药设计是一项创造性的工程,涉及现有实验数据的总结与分析,以及传统和新颖的分子建模技术。这可能是一个极其复杂、漫长且花费巨大的过程。人工智能和机器学习方法的应用有望彻底改变药物研发的“设计—合成—测试—分析”周期,加速药物设计的进程,从而降低成本。
在过去几年间,人工智能、机器学习领域已经实现了从理论研究到实际应用的转向。图形处理单元的可用性,以及深度学习等人工智能、机器学习算法的进步,推动了人工智能助力药物研发的爆发式发展。通过在深度学习算法中使用神经网络,能够使计算机通过数据学习来模仿人类智能。这些技术方法可以应用于药物设计的诸多方面。
本书概述了药物设计中人工智能、机器学习、深度学习方法开发和应用的最新进展及技术水平。书中还讨论了这些方法的应用范围,以及现在和不久的将来其对生产力产生的最大影响。对上述内容的系统介绍将使计算化学、药物化学、药物设计和药理学等领域的科研人员能够掌握现有的技术,面对挑战,进而更好地理解正处于开发之中的新方向。