主要观点总结
本文讨论了人工智能的发展路径及其影响,包括行为主义学派与内在主义学派的探索、人工智能的三个阶段、深度学习的不安全性、大语言模型的“大模型”与“大文本”、迈向通用人工智能的四个步骤、基础模型的出路以及大模型的局限性等。
关键观点总结
关键观点1: 行为主义学派与内在主义学派对人工智能的探索
行为主义学派主张用机器模拟人类的智能行为,而内在主义学派则主张用机器模拟人类大脑的工作原理。目前这两种思路都处于探索阶段。
关键观点2: 人工智能的三个阶段
第一代人工智能的目标是让机器像人类一样思考,第二代人工智能主要基于人工神经网络,而第三代人工智能则强调发展人工智能理论。
关键观点3: 深度学习的不安全性
深度学习存在不安全性,因为基于深度学习的模式识别与人类的视觉认知机制不同,容易受到噪声等因素的影响导致误判。
关键观点4: 大语言模型的“大模型”与“大文本”
目前比较成功的AI工具的强大之处在于两个“大”,一是大模型,二是大文本。大模型能够分类、学习数据中间的关联关系,大文本则使计算机能够理解和处理更丰富的文本信息。
关键观点5: 迈向通用人工智能的四个步骤
从大语言模型迈向通用人工智能需要四个步骤:与人类对齐、多模态生成、与数字世界交互、与客观世界交互。
关键观点6:
关键观点7:
正文
人工智能的两条路径
迄今为止,全世界对于“什么是智能”尚无统一认识,但经过多年的探索,人工智能已然走出了两条道路。一条道路是
行为主义学派
,另一条道路是内在主义学派。
其中,行为主义学派主张用机器模拟人类的智能行为。“智能”与“智能的行为”是两个完全不同的概念。“智能”在我们大脑里,人类至今仍对其知之甚少;“智能的行为”则是智能的外部表现,可以进行观察和模拟。因此,行为主义学派人工智能追求的目标是机器行为与人类行为的相似性,而非内部工作原理的一致性。目前人工智能的主流是机器智能,这种人工智能与人类的智能只存在行为相似,并非完全一致。内在主义学派主张必须用机器模拟人类大脑的工作原理,即类脑计算。这两个学派按照不同的思路对人工智能进行探索,前者主张除人类这条道路外,机器或其他方法也可以走出一条智能道路;后者主张走向智能道路只能依靠人类。目前这两种思路都处于探索阶段。
人类对人工智能道路的探索始于1956年。当时在美国召开了人工智能研讨会,来自数学、计算机科学、
认知心理学
、经济学和哲学等不同领域的10位专家经过八周的讨论定义了人工智能。他们主张通过符号推理、符号表示来做一个能像人那样思考的机器。在这次会议上,纽维尔(Newell)和西蒙(Simon)演示了一个名为“逻辑学家”的程序。该程序用机器证明了数学原理第二章中的部分原理,数学定理证明与推理相似,这表明机器能做类似推理的工作。最终,“人工智能”在这个会议上获得了定义。
1978年,清华大学成立了人工智能与智能控制教研组,这是中国最早的人工智能教学与科研机构。教研组有三十余位教师参与,其中绝大部分来自自动控制领域,而非人工智能。1978年,教研组招收了第一批硕士生,1985年开始招收第一批博士生,已能够开展一些与人工智能相关的教学工作,但科研工作进展不大。1982年至1984年,教研组进行调查研究,访问了西南、东北等地大量研究所及工厂。结合所见所闻,教研组确定了以智能机器人作为主要研究方向。
1985年清华大学建立智能机器人实验室,1986年国家设立“863”发展计划,该计划将智能机器人作为一个主题。清华大学参加了第一届智能机器人主题的“863”高技术研究,从第一届到第四届均作为专家单位参加委员会。到了第五届,清华大学成为开展智能机器人研究的组长单位,1997年,成为空间机器人研究的组长单位。“智能技术与系统”国家重点实验室自1987年开始筹建,1990年正式成立。
在这些工作的基础上,相关研究得以开展。当时首先建立了两个理论。一是问题求解的商空间理论和粒计算理论,在国际上影响很大。2005年,清华大学发起、组织了国际粒计算会议,每年一次,延续至今。二是在
人工神经网络
方面做了很多早期工作。
人工智能的三个阶段
1956年至今,人工智能的发展分为三个阶段,分别是第一代人工智能、第二代人工智能和第三代人工智能。
第一代人工智能的目标是让机器像人类一样思考。
思考是指推理、决策、诊断、设计、规划、创作、学习等。无论做管理工作还是技术工作,都需要两方面的能力,一是在某个领域具有丰富的知识和经验,二是具有很强的推理能力。其中推理是指运用知识的能力,换言之,是从已有知识出发,推出新的结论、新的知识的能力。
基于以上分析,人工智能的创始人提出了“基于知识与经验的推理模型”,该模型的核心是若要实现机器思考,只需将相应的知识放入计算机即可。例如,如果要让计算机像医生一样为患者诊断,只需要把医生的知识和经验放到知识库里,将医生看病的推理过程放入推理机制之中,计算机就能为患者实施机器诊断。这一推理模型的核心思想是知识驱动,通过计算模型来实现让机器像人类那样思考。该模型最大的缺点是缺乏自学能力,难以从客观世界学习知识,所有知识都源于人类灌输。因此,第一代人工智能永远无法超越人类。
第二代人工智能源于第一代人工智能的低潮期,主要基于人工神经网络。1943年,人工神经网络模型提出,它主要模拟人类脑神经网络的工作原理。第二代人工智能面临的主要问题是感性知识的传授。第一代人工智能主要在符号主义指导下进行,目的是模拟人类的理性行为。但人类除了理性行为外,还有大量的感性行为,而感性行为要用人工神经网络进行模拟。