专栏名称: 大数据实验室
宽客俱乐部旗下美国大数据实验室,大数据研究应用。
目录
相关文章推荐
IDC咨询  ·  Data+AI市场快速演进,数据管理分析与G ... ·  20 小时前  
IDC咨询  ·  Data+AI市场快速演进,数据管理分析与G ... ·  20 小时前  
人工智能与大数据技术  ·  15亿美元AI独角兽崩塌,全是印度程序员冒充 ... ·  昨天  
数据派THU  ·  【ICML2025】MARGE:通过引导式探 ... ·  2 天前  
51好读  ›  专栏  ›  大数据实验室

一起读懂传说中的经典:受限玻尔兹曼机

大数据实验室  · 公众号  · 大数据  · 2018-05-14 07:30

正文

请到「今天看啥」查看全文


在每一个隐藏节点,每个输入 x 都与对应的权重 w 相乘。也就是说,一个输入 x 会拥有 12 个权重(4 个输入节点×3 个输出节点)。两层之间的权重总会形成一个矩阵,矩阵的行数等于输入节点的个数,列数等于输出节点的个数。


每个隐藏节点会接收 4 个与对应权重相乘的输入。这些乘积的和再一次与偏置相加,并将结果馈送到激活函数中以作为隐藏单元的输出。



如果这两层是更深网络的一部分,那么第一个隐藏层的输出会被传递到第二个隐藏层作为输入,从这里开始就可以有很多隐藏层,直到它们增加到最终的分类层。对于简单的前馈网络,RBM 节点起着自编码器的作用,除此之外,别无其它。



重建(Reconstruction)


但是在本文关于 RBM 的介绍中,我们会集中讨论它们如何以一种无监督的方式通过自身来重建数据,这使得在不涉及更深层网络的情况下,可见层和第一个隐藏层之间会存在数次前向和反向传播。


在重建阶段,第一个隐藏层的激活状态变成了反向传递过程中的输入。它们与每个连接边相同的权重相乘,就像 x 在前向传递的过程中随着权重调节一样。这些乘积的和在每个可见节点处又与可见层的偏置项相加,这些运算的输出就是一次重建,也就是对原始输入的一个逼近。这可以通过下图表达:

【宽客网络课堂】量化交易实战策略——高级篇


1. 了解金融行业和二级市场的业务知识
2.
搭建稳定交易体系的系统性方法
3.
掌握量化分析的理论和实战基础
4.
精通相关编程语言及 IT 技术
5.
具备跨界融合能力

报名电话/微信:18516600808






因为 RBM 的权重是随机初始化的,所以,重建结果和原始输入的差距通常会比较大。你可以将 r 和输入值之间的差值看做重建误差,然后这个误差会沿着 RBM 的权重反向传播,以一个迭代学习的过程不断反向传播,直到达到某个误差最小值。


正如你所看到的,在前向传递过程中,给定权重的情况下 RBM 会使用输入来预测节点的激活值,或者输出的概率 x:p(a|x; w)。


但是在反向传播的过程中,当激活值作为输入并输出原始数据的重建或者预测时,RBM 尝试在给定激活值 a 的情况下估计输入 x 的概率,它具有与前向传递过程中相同的权重参数。这第二个阶段可以被表达为 p(x|a; w)。


这两个概率估计将共同得到关于输入 x 和激活值 a 的联合概率分布,或者 p(x, a)。重建与回归有所不同,也不同于分类。回归基于很多输入来估计一个连续值,分类预测出离散的标签以应用在给定的输入样本上,而重建是在预测原始输入的概率分布。


这种重建被称之为生成学习,它必须跟由分类器执行的判别学习区分开来。判别学习将输入映射到标签上,有效地在数据点与样本之间绘制条件概率。若假设 RBM 的输入数据和重建结果是不同形状的正态曲线,它们只有部分重叠。








请到「今天看啥」查看全文