专栏名称: AI科技评论
「AI科技评论」是国内顶尖人工智能媒体和产业服务平台,专注全球 AI 业界、学术和开发三大方向的深度报道。
目录
相关文章推荐
51好读  ›  专栏  ›  AI科技评论

语义分割,对抗生成,图学习和算法研究,京东数科 6 篇AAAI 论文精华解读

AI科技评论  · 公众号  · AI  · 2020-02-13 15:08

正文

请到「今天看啥」查看全文



通过在两个公共知识图谱数据集上和现有算法的对比实验,我们验证了提出的方法能够产生更好的知识图谱补全的结果。

四、算法研究

4、 针对鲁棒支持向量机的快速数据筛选算法

论文地址:https://arxiv.org/pdf/1912.11217.pdf

在现实机器学习应用中,我们经常使用鲁棒支持向量机提高预测性能,减小噪声的影响。由于鲁棒支持向量机使用非凸的的目标函数,差分优化方法经常被采用来计算,并使用多个外循环,从而大大地增加了计算复杂性,限制了鲁棒支持向量机在大数据上的使用。
在我们最新的工作,我们设计了新的快速数据筛选算法,快速找到并去掉代表性差的数据,在不影响预测结果的前提下,大大降低训练数据的数目,从而解决了鲁棒支持向量机无法在大数据上应用的难点。

已有的快速数据筛选算法只能使用在凸的目标函数上,因此不能直接应用到鲁棒支持向量机模型。


因此我们设计了新的快速数据筛选算法,基于凸函数和凹函数共同表达的框架,我们提供了新的数据筛选规则,并提供理论支持,保证我们的算法可以筛选到所以有代表性的数据,没有遗漏。

这是第一个针对非凸目标函数的快速数据筛选算法。

我们在多个大数据集上进行了测试,我们的新算法可以大大提高鲁棒支持向量机的效率,从而可以解决大数据中的预测问题。
5、基于四重随机梯度的大规模非线性半监督有序回归AUC优化

论文链接:https://arxiv.org/pdf/1912.11193.pdf

有序回归问题(类别标记存在有序关系)广泛存在于现实世界中,例如天气预报中的级别关系,预警系统中的级别关系, 金融风险预测的级别关系。传统的有序回归算法通常是基于有序二分类分解方法,即将原问题分解为多个二分类的子问题,再最小化子问题的分类误差来进行求解。但是,这种方法会天然的会使每个二分类问题出现类别不均衡的问题。最小化分类误差的方法无法有效的解决这种类别不均衡问题。有研究指出,在有序回归问题中,利用AUC指标类别不明感的特点,直接优化AUC指标能得到一个更好的有序回归模型。


进一步地,在现实问题中,收集大量的有标签的等级数据非常困难。然而存在很多没有标记的数据。如何利用这些无标记数据提升有序回归分类器是一个重要的问题。

本文考虑在半监督有序回归数据集上通过优化AUC指标来训练分类器。通过二分类分解法,我们给出了半监督有序回归AUC优化的目标函数。同时,针对大规模的带有核的优化问题,我们给出一种基于双重随机梯度的优化算法,QS3ORAO。

我们的算法的具有O(1/t)的收敛速度。 此外,实验结果表明,我们的算法在速度,处理数据规模方面优于现有的方法,同时具有相似的推广性能。

6、学习从轨迹中生成电子地图

论文链接:https://www.ntu.edu.sg/home/c.long/paper/AAAI-RuanS.361.pdf

最新且准确的路网数据对于城市中的很多应用,比如车载导航和线路优化等,都非常重要。传统的道路数据采集方法依赖于现场调查,消耗大量的人力物力。

随着GPS设备的普及,海量轨迹数据在城市里产生,给我们提供了一种用轨迹数据生成路网的机遇。但是,现有的轨迹数据恢复地图的方法,需要很多经验参数,并且没有很好的利用现有地图中的先验知识,导致生成的地图被过度简化,或者过度复杂化。

因此,我们提出了一种基于深度学习来从轨迹中生成电子地图的方法DeepMG, 它能够学习现有路网的结构,并克服GPS定位中存在的噪声。DeepMG的框架如下图所示:

DeepMG框架.

它先从空间视角和转移视角从轨迹中抽取特征,并利用深度卷积神经网络T2RNet(如下图)推测道路中心线。

T2RNet网络结构.

T2RNet通过引入辅助任务道路覆盖区域预测,提升中心线预测的准确性。之后,再次利用轨迹数据精细化得到的路网,保证路网拓扑的联通性以及正确性。







请到「今天看啥」查看全文