正文
Stars:5133
Torch7,深度学习库。
Torch7 是一个科学计算框架,支持机器学习算法。易用而且提供高效的算法实现,得益于 LuaJIT 和一个底层的 C 实现。
13.OpenFace
Stars:4855
基于深度学习网络的面部识别。
14.MXNet
Stars:4685
轻巧、便携、灵活的分布式/移动深度学习框架,支持Python, R, Julia, Scala, Go, Javascript等等语言。
MXNet是一款设计为效率和灵活性的深度学习框架。它允许你混合符号编程和命令式编程,从而最大限度提高效率和生产力。在其核心是一个动态的依赖调度,它能够自动并行符号和命令的操作。一个图形优化层,使得符号执行速度快,内存使用高效。这个库便携,轻量,而且能够扩展到多个GPU和多台机器。
15.Theano
Stars:4286
Theano 是一个 Python 库,用来定义、优化和模拟数学表达式计算,用于高效的解决多维数组的计算问题。
16.Leaf
Stars:4281
黑客的开源机器智能框架。
17.Char RNN
Stars:3820
多层递归神经网络的字符级别语言模型,基于Torch开发。
18.Neural Talk
Stars:3694
NeuralTalk是一个Python+numpy项目,用多模式递归神经网络描述图像。
19.deeplearning4j
Stars:3673
基于Hadoop 和 Spark的Java, Scala & Clojure深度学习工具。
Deeplearning4j(简称DL4J)是为Java和Scala编写的首个商业级开源分布式深度学习库。DL4J与Hadoop和Spark集成,为商业环境(而非研究工具目的)所设计。Skymind是DL4J的商业支持机构。
Deeplearning4j 技术先进,以即插即用为目标,通过更多预设的使用,避免太多配置,让非研究人员也能够进行快速的原型制作。DL4J同时可以规模化定制。DL4J遵循Apache 2.0许可协议,一切以其为基础的衍生作品均属于衍生作品的作者。
20.TFLearn
Stars:3368
深度学习库,包括高层次的TensorFlow接口。
21.TensorFlow Playground
Stars:3352
神经网络模型示例。
22.OpenAI Gym
Stars:3020
一种用于开发和比较强化学习算法的工具包。
23.Magenta
Stars:2914
Magenta: 音乐和艺术的生成与机器智能
Google Brain团队的一组研究人员发布了一个项目Project Magenta,其主要目标是利用机器学习创作艺术和谱写曲子。Project Magenta使用了 TensorFlow系统,研究人员在GitHub上开源了他们的模型和工具。
研究人员称,机器生成的音乐已经存在了许多年,但它们在都缺乏长的叙事艺术。Project Magenta就试图将故事作为机器生成音乐的重要部分。Google公布了一个DEMO(MP3)表现Magenta项目的成果。
24.Colornet