专栏名称: 小学数学
小学数学,向您提供小学数学同步学习知识点解析,学习资讯,关注我们,小学路上不在孤单!
目录
相关文章推荐
超级数学建模  ·  你初吻啥时候没有的​?​ ·  19 小时前  
超级数学建模  ·  穿上不怕热,越热还越“凉快”!三伏天都怕碰上 ... ·  19 小时前  
超级数学建模  ·  跑鞋这个赛道,它实在强的可怕! ·  19 小时前  
超级数学建模  ·  年仅53岁!985大学一高层次人才逝世 ·  2 天前  
超级数学建模  ·  起猛了!100 ... ·  3 天前  
51好读  ›  专栏  ›  小学数学

小学数学应用题解答方法公式汇总,期末考提分宝典!

小学数学  · 公众号  · 数学  · 2016-12-30 17:43

正文

请到「今天看啥」查看全文


解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。

数量关系式:单一量×份数=总数量(正归一)

总数量÷单一量=份数(反归一)


例 一个织布工人,在七月份织布 4774 米 , 照这样计算,织布 6930 米 ,需要多少天?

分析:必须先求出平均每天织布多少米,就是单一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天)


(3)归总问题: 是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。


特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。


数量关系式:单位数量×单位个数÷另一个单位数量 = 另一个单位数量        单位数量×单位个数÷另一个单位数量= 另一个单位数量。


例 修一条水渠,原计划每天修 800 米 , 6 天修完。实际 4 天修完,每天修了多少米?


分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。 80 0 × 6 ÷4=1200 (米)


(4) 和差问题: 已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。


解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。


解题规律:(和+差)÷2 = 大数   大数-差=小数

(和-差)÷2=小数       和-小数= 大数


例 某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求原来甲班和乙班各有多少人?


分析:从乙班调 46 人到甲班,对于总数没有变化,现在把乙数转化成 2 个乙班,即 9 4 - 12 ,由此得到现在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在调出 46 人之前应该为 41+46=87 (人),甲班为 9 4 - 87=7 (人)


(5)和倍问题: 已知两个数的和及它们之间的倍数 关系,求两个数各是多少的应用题,叫做和倍问题。


解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。求出倍数和之后,再求出标准的数量是多少。根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。

解题规律:和÷倍数和=标准数   标准数×倍数=另一个数

例:汽车运输场有大小货车 115 辆,大货车比小货车的 5 倍多 7 辆,运输场有大货车和小汽车各有多少辆?


分析:大货车比小货车的 5 倍还多 7 辆,这 7 辆也在总数 115 辆内,为了使总数与( 5+1 )倍对应,总车辆数应( 115-7 )辆 。


列式为( 115-7 )÷( 5+1 ) =18 (辆), 18 × 5+7=97 (辆)


(6)差倍问题: 已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。


解题规律:两个数的差÷(倍数-1 )= 标准数  标准数×倍数=另一个数。


例 甲乙两根绳子,甲绳长 63 米 ,乙绳长 29 米 ,两根绳剪去同样的长度,结果甲所剩的长度是乙绳 长的 3 倍,甲乙两绳所剩长度各多少米? 各减去多少米?


分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的 3 倍,实比乙绳多( 3-1 )倍,以乙绳的长度为标准数。列式( 63-29 )÷( 3-1 ) =17 (米)…乙绳剩下的长度, 17 × 3=51 (米)…甲绳剩下的长度, 29-17=12 (米)…剪去的长度。


(7)行程问题: 关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。


解题关键及规律:

同时同地相背而行:路程=速度和×时间。

同时相向而行:相遇时间=速度和×时间

同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。

同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。


例 甲在乙的后面 28 千米 ,两人同时同向而行,甲每小时行 16 千米 ,乙每小时行 9 千米 ,甲几小时追上乙?


分析:甲每小时比乙多行( 16-9 )千米,也就是甲每小时可以追近乙( 16-9 )千米,这是速度差。


已知甲在乙的后面 28 千米 (追击路程), 28 千米 里包含着几个( 16-9 )千米,也就是追击所需要的时间。列式 2 8 ÷ ( 16-9 ) =4 (小时)


(8)流水问题: 一般是研究船在“流水”中航行的问题。它是行程问题中比较特殊的一种类型,它也是一种和差问题。它的特点主要是考虑水速在逆行和顺行中的不同作用。


船速:船在静水中航行的速度。

水速:水流动的速度。

顺水速度:船顺流航行的速度。

逆水速度:船逆流航行的速度。

顺速=船速+水速

逆速=船速-水速

解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答。 解题时要以水流为线索。

解题规律:船行速度=(顺水速度+ 逆流速度)÷2

流水速度=(顺流速度逆流速度)÷2

路程=顺流速度× 顺流航行所需时间

路程=逆流速度×逆流航行所需时间


例 一只轮船从甲地开往乙地顺水而行,每小时行 28 千米 ,到乙地后,又逆水 航行,回到甲地。逆水比顺水多行 2 小时,已知水速每小时 4 千米。求甲乙两地相距多少千米?


分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间。已知顺水速度和水流 速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用 2 小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程。


列式为 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小时) 28 × 5=140 (千米)。


(9) 还原问题 :已知某未知数,经过一定的四则运算后所得的结果,求这个未知数的应用题,我们叫做还原问题。


解题关键:要弄清每一步变化与未知数的关系。


解题规律:从最后结果 出发,采用与原题中相反的运算(逆运算)方法,逐步推导出原数。


根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数。


解答还原问题时注意观察运算的顺序。若需要先算加减法,后算乘除法时别忘记写括号。


例 某小学三年级四个班共有学生 168 人,如果四班调 3 人到三班,三班调 6 人到二班,二班调 6 人到一班,一班调 2 人到四班,则四个班的人数相等,四个班原有学生多少人?


分析:当四个班人数相等时,应为 168 ÷ 4 ,以四班为例,它调给三班 3 人,又从一班调入 2 人,所以四班原有的人数减去 3 再加上 2 等于平均数。四班原有人数列式为 168 ÷ 4-2+3=43 (人)







请到「今天看啥」查看全文