专栏名称: 网络大数据
打造中国最专业的网络大数据科学门户网站,提供新闻动态、研究资料、测量工具、数据报告、在线测量等各项信息及服务,供IDC,CDN,ICP和普通大众共同学习进步。
目录
51好读  ›  专栏  ›  网络大数据

数据科学团队管理实战

网络大数据  · 公众号  · 大数据  · 2017-08-22 17:20

正文

请到「今天看啥」查看全文


也许我们希望证明,我们能够开发出一个算法,预测一款产品是否受欢迎。仅仅是为了好玩!

不过,归根结底,我们数据科学家、数据顾问和软件工程师都受雇于企业,而那些企业希望看到财政营收。你是使用了基于神经网络的算法,还是基于支持向量机的算法,这并没什么关系,只要最大限度地节省成本,或者带来最大的收益。

重要的是记住,数据科学家或大数据分析师越快弄清楚这个问题,就越能有效地发挥他们的作用。数据科学家都要有一点企业家精神。

数据科学家寻找机会为企业省钱,或者发现新的价值流。我们经常是正确的,因为我们不仅了解业务,我们还有数据支撑我们的观点。

这就是有一个与企业步调一致的数据团队的价值之一。他们有推动决策的数据。


数据工程


有个方面有时候会完成得比较仓促,那就是数据工程。它可能看上去不重要,可能看上去很容易修改。但是,如果数据的设计规划不便于操作和开发,那么数据科学家在设计算法和下游工作流时会陷入时间地狱。

这是indeed.com上数据工程师的职位需求占比高于数据科学家的原因之一。

数据的组织方式在分析方面非常重要。我们团队有几名成员最初就是数据工程师,这就是为什么他们如此重要。他们不仅能够创建优美的算法,还能够创建数据管道,让数据能够自然地从点A到点B,从数据仓库到算法。

经过良好设计规划的数据易于修改,容易接入新模块及报告新指标,等等。它可能看起来奇怪,但借助良好的数据工程,一切都是有可能的!


系统设计也是为了数据科学家







请到「今天看啥」查看全文