正文
19.3 kWh kg⁻¹
,降耗
>40%
)。
Fig. 1.
The SEM pictures of Cu foam (a) and Cu foam/CoO (b-d).
为通过
CO
2
吸收辅助
ERNA
系统实现含硝酸盐废水的高效处理,本研究采用电沉积
-
煅烧法制备的
Cu
泡沫
/CoO
作为阴极,该电极兼具高活性和良好稳定性。
XRD
谱图证实
Cu
泡沫
/CoO
电极中存在
CoO
(
PDF#43-1004
)晶面及
Cu
泡沫(
PDF#04-0836
)晶面,且无其他杂质。
SEM
图像显示:原始
Cu
泡沫表面光滑,而负载
CoO
后表面变得粗糙。元素分析进一步验证了
CoO
在
Cu
泡沫上的成功负载。
Fig. 2.
The schematic of CO
2
(abs) assisted ERNA system with PEM (proton exchange membrane) or without.
Fig.
3
.
(
a
) XRD analysis of electrolyte after reaction
;
(
b
) The change of FE and CE (conversion efficiency from CO
2
to HCO
3
-
) along with
the
different CO
2
flux, respectively;
(
c
) The change of yield rate of
NH
4
HCO
3
and special energy consumption (SEC) along with electrolysis time on Cu foam and Cu foam/CoO electrodes with or without CO
2
(abs)
, respectively; (
d
) 10 times continual cycle tests of CO
2
(abs)
assisted ERNA system with Cu foam/CoO electrode (yield rate and SEC). All experiments were conducted in single cell without proton exchange membrane (PEM) and
C
NO
3
-
was 0.04 mol L
-1
under 100 mA cm
-2
with CO
2
flux of 10 mL min
-1
lasting 25 min.
本研究通过
CO
2
吸收辅助电催化硝酸盐还原制氨(
ERNA
)系统实现高效废水处理,产物表征(
XRD
、
TOC
、气体
/
沉淀法及
DEMS-GCMS
分析)确证
NH
4
HCO
3
为主产物(氮碳摩尔比
≈1
),且
CO
2
仅通过酸碱平衡提供质子而未发生还原反应。性能优化表明:当
CO
2
通量为