正文
# dtype('int32')
df.astype({'Q1': 'int32','Q2':'int32'}).dtypes
4、转为时间类型
t = pd.Series(['20200801', '20200802'])
03、数据排序
数据排序是指按一定的顺序将数据重新排列,帮助使用者发现数据的变化趋势,同时提供一定的业务线索,还具有对数据纠错、分类等作用。
1、索引排序df.sort_index()
s.sort_index()
df.sort_index()
df.team.sort_index()s.sort_index(ascending=False)
s.sort_index(inplace=True)
s.sort_index(ignore_index=True)
s.sort_index(na_position='first')
s.sort_index(level=1)
s.sort_index(level=1, sort_remaining=False)
df.sort_index(axis=1)
2、数值排序sort_values()
df.Q1.sort_values()
df.sort_values('Q4')
df.sort_values(by=['team', 'name'],ascending=[True, False])
其他方法:
s.sort_values(ascending=False) # 降序
s.sort_values(inplace=True) # 修改生效
s.sort_values(na_position='first') # 空值在前
# df按指定字段排列
df.sort_values(by=['team'])
df.sort_values('Q1')
# 按多个字段,先排team,在同team内再看Q1
df.sort_values(by=['team', 'Q1'])
# 全降序
df.sort_values(by=['team', 'Q1'], ascending=False)
# 对应指定team升Q1降
df.sort_values(by=['team', 'Q1'],ascending=[True, False])
# 索引重新0-(n-1)排
df.sort_values('team', ignore_index=True)
3、混合排序
df.set_index('name', inplace=True) # 设置name为索引
df.index.names = ['s_name'] # 给索引起名
df.sort_values(by=['s_name', 'team']) # 排序
4、按值大小排序nsmallest()和nlargest()
s.nsmallest(3) # 最小的3个
s.nlargest(3) # 最大的3个
# 指定列
df.nlargest(3, 'Q1')
df.nlargest(5, ['Q1', 'Q2'])
df.nsmallest(5, ['Q1', 'Q2'])
04、添加修改
数据的修改、增加和删除在数据整理过程中时常发生。修改的情况一般是修改错误、格式转换,数据的类型修改等。
1、修改数值
df.iloc[0,0] # 查询值
# 'Liver'
df.iloc[0,0] = 'Lily' # 修改值
df.iloc[0,0] # 查看结果
# 'Lily'
# 将小于60分的成绩修改为60
df[df.Q1 < 60] = 60
# 查看
df.Q1
# 生成一个长度为100的列表
v = [1, 3, 5, 7, 9] * 20
2、替换数据
s.replace(0, 5) # 将列数据中的0换为5
df.replace(0, 5) # 将数据中的所有0换为5
df.replace([0, 1, 2, 3], 4) # 将0~3全换成4
df.replace([0, 1, 2, 3], [4, 3, 2, 1]) # 对应修改
s.replace([1, 2], method='bfill') # 向下填充
df.replace({0: 10, 1: 100}) # 字典对应修改
df.replace({'Q1': 0, 'Q2': 5}, 100) # 将指定字段的指定值修改为100
df.replace({'Q1': {0: 100, 4: 400}}) # 将指定列里的指定值替换为另一个指定的值
3、填充空值
df.fillna(0) # 将空值全修改为0
# {'backfill', 'bfill', 'pad', 'ffill',None}, 默认为None
df.fillna(method='ffill') # 将空值都修改为其前一个值
values = {'A': 0, 'B': 1, 'C': 2, 'D': 3}
df.fillna(value=values) # 为各列填充不同的值
df.fillna(value=values, limit=1) # 只替换第一个
4、修改索引名
df.rename(columns={'team':'class'})
常用方法如下:
df.rename(columns={"Q1":"a", "Q2": "b"}) # 对表头进行修改