专栏名称: 钛媒体
最新鲜犀利的商业见闻,最国际视野的前沿技术,最不常见的独家猛料。钛媒体(www.tmtpost.com),网罗天下创新事,一个创新者最爱聚集的地方。
目录
51好读  ›  专栏  ›  钛媒体

“阿尔法狗”大升级,新“机器人”有了记忆

钛媒体  · 公众号  · 科技媒体  · 2016-10-31 10:34

正文

请到「今天看啥」查看全文



时至今日,人类对记忆的比喻变得更为精炼。记忆对我们来说不再是蜡板,而是一种可塑的过程。在这个过程中,特定的片段组成你的经历,而这些记忆的片段可以重组。


另外,行为与记忆之间的关系是可变的,而非“刺激—反应”这样么简单。它怎么变,与事件的背景与处理事件的优先级别相关。


举个例子来说,如果记得伦敦地铁图,就能回答以下两个有相同答案的问题:“怎么从Piccadilly Circus站去Moorgate站?”和“如果选一条和Northern Line线相邻的线向北走,怎样才能到Moorgate站?”可见,记忆的内容可以和记忆的使用被分开。


另一种观点认为, 记忆经过整理之后,可以用于计算。它更像是乐高玩具,人们可以根据问题重组记忆。


神经网络在图形认知方面表现出色,反应快速,决策及时,而我们才刚开始建立能缓慢思考的神经网络,这种网络能有目的,或理性地运用知识。比如,让它储存像交通运输网这种信息,随后有逻辑、合理地思考这些碎片化知识,并回答问题。


我们在最近发表的论文中阐述,如何结合神经网络和记忆系统,造出这一种能快速储存并灵活解读知识的学习型机器。这些被我们成为DNC(differentiable neural computers)的机器,可以像神经网络一样学习,还可以像电脑一样存储复杂数据。


一台普通电脑的处理器可以通过RAM读写信息。RAM给了处理器更多的空间来整理计算过程中的信息。储存临时信息的空间被称为变量,被存在记忆卡上。对电脑来说,设置一个储存数字的变量很简单,建立数据结构也不难,因为变量之间都有关联。


最简单的数据结构之一是列表,列表中,变量按顺序排列。一种更复杂的数据结构是树状结构,如家谱,顺着孩子就能找到父母,以及他们和祖先之间的联系。最复杂且综合的数据结构是图表,如伦敦地铁图。







请到「今天看啥」查看全文