正文
下文作者为Nature上海办公室的开明,内容未经过同行评议,已首发于果壳科学人
。
人工智能棋手 AlphaGo先后战胜了两位顶尖围棋高手李世乭和柯洁。在这场猛烈风暴席卷了世界后,AlphaGo宣布不再和人下棋。但它的创造者并没有因此停下脚步,AlphaGo还在成长,今天Deepmind又在《自然》期刊上发表了关于 AlphaGo的新论文。
D
eepmind于2016年1月28日在
Nature
杂志上发表第一篇关于AlphaGo的论文,并登上封面。
Nature
这篇论文中的 AlphaGo是全新的,它不是战胜柯洁的那个最强的 Master,但却是孪生兄弟。它的名字叫AlphaGo Zero。和以前的 AlphaGo相比,它:
• 从零开始学习,不需要任何人类的经验
• 使用更少的算力得到了更好的结果
• 发现了新的围棋定式
• 将策略网络和值网络合并
• 使用了深度残差网络
AlphaGo Zero最大的突破是实现了白板理论。白板理论是哲学上的一个著名观点,认为婴儿生下来是白板一块,通过不断训练、成长获得知识和智力。
作为 AI 领域的先驱,图灵使用了这个想法。在提出了著名的“图灵测试”的论文中,他从婴儿是一块白板出发,认为只要能用机器制造一个类似小孩的 AI,然后加以训练,就能得到一个近似成人智力,甚至超越人类智力的AI。
现代科学了解到的事实并不是这样,婴儿生下来就有先天的一些能力,他们偏爱高热量的食物,饿了就会哭闹希望得到注意。这是生物体在亿万年的演化中学来的。
计算机则完全不同,它没有亿万年的演化,因此也没有这些先天的知识,是真正的“白板一块”。监督学习
(Supervised Learning)
和无监督学习
(Unsupervised Learning)
是镜子的两面,两者都想解决同一个问题——如何让机器从零开始获得智能?
监督学习认为人要把自己的经验教给机器。拿分辨猫猫和狗狗的AI来说,你需要准备几千张照片,然后手把手教机器——哪张照片是猫,哪张照片是狗。机器会从中学习到分辨猫狗的细节,从毛发到眼睛到耳朵,然后举一反三得去判断一张它从没见过的照片是猫猫还是狗狗。