专栏名称: 芯师爷
最及时且有深度的半导体新媒体。每日解读半导体科技最新资讯、发展趋势、技术前沿信息,分享产业研究报告,并打造中国最大的半导体社群与生态圈,欢迎加入半导体专业人士的圈子!旗下更多订阅号:今日芯闻、全球物联网观察。
目录
相关文章推荐
腾讯  ·  请领儿童节礼“包” ·  昨天  
人民网舆情数据中心  ·  倒计时3天丨2025国民视觉健康科普行动即将启动! ·  20 小时前  
白鲸出海  ·  中国互联网出海一周头条 ... ·  昨天  
网络舆情和危机公关  ·  胖东来赢了“红内裤”官司之后的隐忧 ·  2 天前  
51好读  ›  专栏  ›  芯师爷

【技术专栏】从光电技术角度看自动驾驶

芯师爷  · 公众号  ·  · 2018-03-27 19:21

正文

请到「今天看啥」查看全文



光束发散取决于波长和发射天线尺寸(微波雷达)或透镜孔径大小(激光雷达)的比值。微波雷达这一比值较大,因此发散度更大,角度分辨率较低。图中微波雷达(黑色)将无法区分这两辆车,而激光雷达(红色)可以。

对汽车激光雷达系统设计者来说,最关键的选择之一是光波长。制约这一选择的因素有几个:


· 对人类视觉的安全性

· 在大气中的传播特性

· 激光的可用性和光电探测器的可用性

两种最流行的波长是905和1550 nm,905nm的主要优点是硅在该波长处吸收光子,而硅基光电探测器通常比探测1550 nm光所需的铟镓砷(InGaAs)近红外探测器便宜。


可用于自动驾驶激光雷达的滨松 近红外MPPC(硅光电倍增管) 在905nm处具有较高的探测效率,响应速度快,工作温度范围宽,适合各种场合下的激光雷达应用,尤其是使用TOF测距法的长距离测量。


然而,1550nm的人类视觉安全度更高,可以使用单脉冲更大辐射能量的激光——这是光波长选择的一个重要因素。


1550nm 探测器

滨松InGaAs APD G8931


大气衰减(在所有天气条件下)、空气中粒子的散射以及目标表面的反射率都与波长有关。由于有各种各样可能的天气条件和反射表面,对于这些条件下汽车激光雷达波长的选择来说是一个复杂的问题。在大多数实际情况下,905 nm处的光损失更小,因为在1550 nm处的水分的吸收率比905 nm处要大。 1


光探测器的选择


只有一小部分脉冲发射的光子可以到达光电探测器的有效区域。如果大气衰减沿脉冲路径不变化,激光光束发散度可忽略不计,光斑尺寸小于目标,入射角垂直于探测器且反射体是朗伯体(所有方向均反射),则光接收峰值功率P(R)为:


P 0 是发射激光脉冲的光峰值功率,ρ是目标的反射率,A 0 是接收器孔径面积,η 0 是光学系统透过率,γ是大气消光系数。

该方程表明,随着距离R的增加,接收功率迅速减小。为了合理选择参数,R=100 m,探测器的活动区域上返回光子的数量大约是几百到几千,而通常发射的光子超过10 12 。这些回波光子与背景光子同时被探测,而背景光子没有任何有用信息。

采用窄带滤波器可以减少到达探测器的背景光,但不能减少到零,背景光的影响使检测动态范围减小,噪声(背景光子拍摄噪声)增大。值得注意的是,典型条件下地面太阳辐照度在1550 nm处小于905 nm。







请到「今天看啥」查看全文