正文
serverWeightMap.put("192.168.1.109", 1);
serverWeightMap.put("192.168.1.110", 1);
}
}
轮询(Round Robin)法
轮询法即Round Robin法,其代码实现大致如下:
public class RoundRobin
{
private static Integer pos = 0;
public static String getServer()
{
// 重建一个Map,避免服务器的上下线导致的并发问题
Map
serverMap =
new HashMap
();
serverMap.putAll(IpMap.serverWeightMap);
// 取得Ip地址List
Set
keySet = serverMap.keySet();
ArrayList
keyList = new ArrayList
();
keyList.addAll(keySet);
String server = null;
synchronized (pos)
{
if (pos > keySet.size())
pos = 0;
server = keyList.get(pos);
pos ++;
}
return server;
}
}
由于serverWeightMap中的地址列表是动态的,随时可能有机器上线、下线或者宕机,因此为了避免可能出现的并发问题,方法内部要新建局部变量serverMap,现将serverMap中的内容复制到线程本地,以避免被多个线程修改。这样可能会引入新的问题,复制以后serverWeightMap的修改无法反映给serverMap,也就是说这一轮选择服务器的过程中,新增服务器或者下线服务器,负载均衡算法将无法获知。新增无所谓,如果有服务器下线或者宕机,那么可能会访问到不存在的地址。因此,服务调用端需要有相应的容错处理,比如重新发起一次server选择并调用。
对于当前轮询的位置变量pos,为了保证服务器选择的顺序性,需要在操作时对其加锁,使得同一时刻只能有一个线程可以修改pos的值,否则当pos变量被并发修改,则无法保证服务器选择的顺序性,甚至有可能导致keyList数组越界。
轮询法的优点在于:试图做到请求转移的绝对均衡。
轮询法的缺点在于:为了做到请求转移的绝对均衡,必须付出相当大的代价,因为为了保证pos变量修改的互斥性,需要引入重量级的悲观锁synchronized,这将会导致该段轮询代码的并发吞吐量发生明显的下降。
随机(Random)法
通过系统随机函数,根据后端服务器列表的大小值来随机选择其中一台进行访问。由概率统计理论可以得知,随着调用量的增大,其实际效果越来越接近于平均分配流量到每一台后端服务器,也就是轮询的效果。
随机法的代码实现大致如下:
public class Random
{
public static String getServer()