专栏名称: AI科技评论
「AI科技评论」是国内顶尖人工智能媒体和产业服务平台,专注全球 AI 业界、学术和开发三大方向的深度报道。
目录
相关文章推荐
51好读  ›  专栏  ›  AI科技评论

马腾宇:AI 学界一颗冉冉升起的新星

AI科技评论  · 公众号  · AI  · 2020-02-23 12:47

正文

请到「今天看啥」查看全文


2.

马腾宇开始读博的时间恰逢其时。2012年,Hinton和他的学生在ImageNet比赛中凭借AlexNet远超第二名10个百分点,由此人类进入了人工智能的新时代 —— 以神经网络为代表的深度学习时代。Sanjeev作为算法领域的领军人物,具有极为敏锐的嗅觉,意识到机器学习(特别是深度学习)将成为一个具有潜力的领域,因此从2012起便开始布局机器学习算法的研究。马腾宇进入普林斯顿后,选择了机器学习算法,与鬲融等人一起进行非凸优化的研究。
在2012年的时候,大多数人还在用传统方法来做优化问题,这些基本上都是凸优化问题。而在深度学习的时代,算法通常需要通过解决一些非凸优化问题来找到最优的神经网络参数。理论上非凸优化是一个NP-hard问题,但实际中即使非常简单的算法也能表现很好。其中原因却少有人了解。马腾宇与鬲融等人是最早一批专注于解决这一问题的研究者。随后正是凭借对非凸优化问题的系统研究,马腾宇在 2018 年获得了ACM博士论文奖荣誉奖(Honorable Mentions),而鬲融也在2019年获得了斯隆研究奖。

马腾宇的博士论文,获2018 ACM 博士论文荣誉奖
3.

一个好的导师,对一个学者的研究生涯至关重要,因为导师的学术价值观和方法论会深刻影响其弟子在以后研究生涯中的态度。Sanjeev无疑是一位好的导师,他所带的学生毕业后大多都去到了美国顶尖大学任教,例如鬲融毕业后去到了杜克大学。

马腾宇(2015),Source: princeton news
在普林斯顿期间,导师Sanjeev对马腾宇的影响也是极大的。马腾宇对他的评价是“Sanjeev是一个‘true scientist’”:
“Sanjeev是真的为了科学在做科研。对他关心的问题,他会细扣所有的细节,从证明,到实验,到写文章不容许一丁点的错误存在。另外,Sanjeev也非常的积极,非常的有耐心,在一个新问题上,他常常会锲而不舍,从各种可能的角度去尝试,即使最初所有的尝试都失败了,他也仍然会一遍又一遍地去尝试新的想法,直到最终成功。这是我从他那里学到的非常重要的一件事情。”






请到「今天看啥」查看全文