专栏名称: 孤独大脑
关于思考的思考。
目录
相关文章推荐
印象笔记  ·  EverMARKER新配色来了!一起Mark ... ·  9 小时前  
印象笔记  ·  人生的归宿是墙角|一周收藏排行 ·  2 天前  
混沌学园  ·  AI商业本周必读|149亿美金创纪录收购!3 ... ·  3 天前  
混沌学园  ·  2.5亿美金估值的秘密:Granola正把A ... ·  3 天前  
51好读  ›  专栏  ›  孤独大脑

复利的公式(三部曲之2)

孤独大脑  · 公众号  · 学习  · 2022-03-13 09:28

正文

请到「今天看啥」查看全文


,概率优势就很难显现出来。

大数定律“说明”了一些随机事件的均值的长期稳定性。
复利公式串起一个个时间切片上的“我”,是将时间视为一种“过去、现在、未来”平铺在一起、同时存在的结构。
如此一来,那一个个 时间切片上的“我”,就成为人一生的样本空间里的一个个样本点:
i 1 i 2 i 3, i 4, i 5, i 6, i 7, i 8, i 9 ......
尽管这是一个太“冷”的隐喻,但是,本文描述的复利公式,将时间的不确定性、空间的不确定性、事件的不确定性,整合到了一个框架里,从而实现了一种全局观。
如果说“人生是一个过程”是一句鸡汤,那么米塞斯所说的“市场是一个过程”则是一种洞见。
当我们在一个完整的概率框架里来思考自己一生当中那一个个“时间切片上的我”的连续性和独立性,就会获得更多的概率权利,也有更大可能性实现富足,并且也能更为有意识地享受人生旅途中的一切。
斯皮茨纳格尔认为,我们必须改变自己的认知维度。专注于当下非常重要,但我们的视野和认知必须从“即期”改为“跨期”。
他将一个光学上的概念用在时间上: 景深
景深是指相机对焦点前后相对清晰的成像范围。
我学习摄影的时候,经常看到“用长焦来压缩景深”的说法。
用广角拍摄时,通常会近大远小。用时间来类比的话,就是能够感受过去现在和未来。这类拍摄有身临其境的现场感。
用长焦拍摄时,较远处的远近不一的景物之间的“ 近大远小 ”效果会减小很多,像是压缩在了一起。
什么是时间的景深呢?那就是将过去、现在、未来压缩在同一个平面上,然后进行样本空间的时间与空间的置换。
马克·斯皮茨纳格尔写道:
资本具有跨期特征:它的定位和在未来不同时点的优势是核心。时间是资本的生存环境——定义它、塑造它、帮助它、阻碍它。当用一种新方式思考资本时,我们也必须从新的角度考量时间,当我们这么做时,这就是我们的路径,我们的资本之道。
也许一切都和这个充满了未知的世界里的不确定性有关。我们追寻可能性,但又害怕不确定性。
于是,那些能将“不确定性”变为“确定性”的人,仿佛是掌握了炼金术的巫师。

期望值
接下来,是关于复利公式的期望值计算。
期望值,是所有与计算有关的决策的基础。
当然,哪里有不需要计算的决策呢?哪怕不涉及数字,只是在心里权衡;哪怕仅仅是对人性的算计。这些也都是模糊的计算。
对于这个常见的概念,真能理解的人极少。
先看基本概念:
在概率论和统计学中,期望值(或数学期望、或均值,亦简称期望,物理学中称为期待值)是指在一个离散性随机变量试验中每次可能结果的概率乘以其结果的总和。
例如,随机扔一个标准的六面骰子,其结果的期望值是:
但是骰子并没有任何一面有数字 3.5 。该数值是 无限多次重复后,得到的一个结果的平均值。
现实中的不确定性,要远比扔骰子复杂得多,未来的可能性无人能够预测,这个时候,计算期望值,就需要贝叶斯学派的估算,概率代表的是一个人的洞见和信念。
我想用一个简单直接的方式来定义:
  • 期望值为正的,是 投资

  • 期望值是负的,是 赌博

  • 期望值未知的,是 投机

赌场的游戏对于赌徒而言(只要对手盘是赌场而非别的赌客)。几乎全是负期望值。
举一个简单的投资的例子:

某公司要重组,可能成功,也可能失败。

成功的可能性定为大约85%,失败的可能性为15%;

重组成功股价 可能 上涨3美元,失败则可能下跌6美元左右;

现在股价是30.5美元,值得投资吗?

计算一下期望值:股价可能上涨的幅度是3美元乘以85%,而下跌的风险是6美元乘以15%。
  • 3美元×85%=(可能上涨)2.55美元

  • -6美元×15%=(可能下跌)-0.9美元

  • 二者相加,该投资的期望值是每股1.65美元 。

从结果看,该公司可以投资,如果重组时间不那么长的话。
但是,期望值为1.65美元,并不等于15%的事情不发生了,投资者还是有不小可能性每股亏掉6美元。
不过,作为职业投资者,因为有很多类似机会,所以长期来看,可能还是赚的。
以上是从单一的“静态模拟”来计算期望值。
在复利公式里,尤其是在不确定世界的复利公式里,期望值的计算会稍微复杂一点儿。
举例:若一投资有60%的获胜率(p = 0.6,q = 0.4),而投资者在赢得赌局时,可获得一赔一的赔率(b = 1)。为了避免爆掉,所以下注者每次会控制下注比例,假设是x。
单次的期望值很容易计算。那么,如果连续下注n次,该如何计算总的期望值呢?
我们做一个简化的模拟:假如连续下注10次,每次都投入所有资金,其中赢了6次,输了4次。
假如赢了,总资金变成原来的(1+x)倍,假如输了,变成原来的(1-x)倍,所以10次之后(简化的模型),总资金会变成的倍数是:
(1+x)✖️(1+x)✖️(1+x)✖️(1+x)✖️(1+x)✖️(1+x)✖️(1-x)✖️(1-x)✖️(1-x)✖️(1-x)
所以,该游戏重复n次的 期望值计算是:
f(x)=(1+x)^(n ✖️ 0.6)✖️(1-x)^( n✖️0.4 )
如上,这其实是一个概率世界的复利公式。
首先,这里仍然有一个重要前提:期望值为正。否则就是赌博。
这时,我们会发现:
  • 下注比例x太小,赚不到钱;

  • x太大,可能会爆掉,以致无法实现遍历性而“享用”正期望值。

有没有一个方法,可以控制x的数值,就像用开关控制水量一样,调节每次下注的比例,在确保不会爆仓的前提下实现收益最大化?

凯利公式
上一节 游戏里重复n次的 期望值计算是:
f(x)=(1+x)^(n ✖️ 0.6)✖️(1-x)^( n✖️0.4 )
对这个概率世界的复利公式, 我们的目标有两个:
1、别让(1-x)变成零或小于零;
2、在1的前提下令f(x)最大。
当年索普发现了赌场21点游戏的漏洞,让自己能够实现正期望值的回报。但仍然要面对具体下注多少的问题。
香农向 索普 推荐了自己同事凯利的一个公式。
与索普自己的信息熵公式有点儿像,凯利公式是对概率世界的复利公式取对数,然后求极值。
凯利公式的目标是:最大化资产的增长率,也即最大化 对数资产的期望值
因为对数增长率,能够更好地反映复利的概念。
设开始时的资产是1,每次下注的比例为f,有p的概率会以b的赔率赢钱, 资产的对数期望值计算如下(就是 对概率下的复利公式两边取对数 的结果):
要找到最大化这个期望值f,只需E对f的导数值为零:
求解上述方程,得出凯利公式:
用图形,更容易看出凯利公式的工作原理:
横坐标是下注比例,纵坐标是回报。
  • 下注小,安全但回报低;

  • 下注大,极可能回报也不高风险却很大。

凯利公式帮助我们找到图中的峰顶,对应的就是最佳下注比例。
人的一生,是由很多个下注串起来的。虽然不像过玻璃桥那么非死即活,但一样充满了巨大的不确定性。
每次做决策时,计算一下输赢的概率,算一下回报,并且随时提醒自己控制好下注的水龙头,千万别All in。
进一步来说,资金加杠杆相当于凯利公式的反向操作:
  • 凯利公式根据胜率和赔率,将下注比例控制在0和100%之间;

  • 资金加杠杆则是将下注比例放大至超过100%。

凯利公式的工作原理图最上方的那个点 ,也许是我们想在人生中找寻的位置: 活下来,活好
凯利公式的不足之处是:
1、必须基于正期望值。然而正期望值、并且回报又不可怜的投资实在太罕见;
2、可能导致总资产的大幅波动;
3、适合于长期的、相对高频的投资;
4、很多时候胜率和赔率都需要靠“主观概率”,靠专业洞察和信念。






请到「今天看啥」查看全文