专栏名称: 数据派THU
本订阅号是“THU数据派”的姊妹账号,致力于传播大数据价值、培养数据思维。
目录
相关文章推荐
InfoTech  ·  团队准备解散了! ·  2 天前  
软件定义世界(SDX)  ·  DeepSeek模型在113个国企的部署及应用 ·  3 天前  
51好读  ›  专栏  ›  数据派THU

数据蒋堂 | 存储过程的利之弊

数据派THU  · 公众号  · 大数据  · 2017-06-25 19:01

正文

请到「今天看啥」查看全文



界面与逻辑分离的准则还有两面性,它并没有明确定义什么程序算是界面,更没有说界面环节就不再有数据计算任务。


一个典型的任务就是报表。报表要在界面中呈现,其业务稳定性也较弱,经常增改,很显然属于界面环节的事务。但是,报表经常却有复杂的数据源计算过程,如果把这部分计算也作为后台逻辑强行放进存储过程中,不仅不会获得界面与逻辑分离的好处,反而会带来巨大的麻烦,这与网上许多推荐在复杂报表的计算过程中采用存储过程的观点正好相反。


报表的呈现模板一般是由报表工具绘制的,以文件形式存放在应用中,如果数据源计算由存储过程完成,则这两个紧密相关的部分在物理上分别存放在两处,要修改一张报表时需要两个部分同步调整,不仅容易遗漏出错,还可能增加沟通成本(两部分的负责人员可能不同)。共享数据库中的存储过程还可能被其它报表甚至其它应用调用,修改时就可能造成其它模块的不正常。 用存储过程实现报表数据源会破坏应用的模块结构,增大应用的耦合度 ,造成维护成本升高。


采用存储过程还会造成安全性和高效性的矛盾。 原则上开发报表只需要对数据库有只读权限,但如果数据源是存储过程开发的,则需要向报表开发人员开放编译和运行存储过程的权限,这几乎可以对数据库做一切操作了,安全隐患非常大。一个办法是加强管理,所有上载的存储过程都需要多人审核把关,但这势必会导致低效率,本来报表开发人员自己就能完成的事情要涉及更多岗位。


如果有不依赖于数据库的便捷计算能力,则可以避免掉存储过程的这些劣势。把业务稳定性不强、与界面相关紧密的计算移到数据库外,和应用程序集成到一起,维护成本更低。即使业务稳定性强的计算逻辑也可以用库外计算实现,能够解决多数据库、非数据库等多样性数据源的问题。不采用存储过程的整体应用结构更为合理。


存储过程有更好的数据计算性能?


实际测试表明,用存储过程实现数据计算,常常比用SQL取出数据后在外部计算的性能更好。存储过程快在哪里了?


网上有观点说,因为存储过程是预编译的,而每次执行SQL时要临时编译,所以存储过程会更快。其实编译SQL的那点时间相对于数据计算而言可以忽略不计,以不同参数反复执行的SQL也可以预先准备,只要编译一次。有些程序员把不同参数拼进SQL,每次向数据库发送不同SQL,编译时间就不可忽略了。


存储过程的快,主要在于数据不出库。外部程序访问库内数据时必须通过数据库提供的接口,而这些接口的性能大都不好,特别是面向Java程序的JDBC接口。每次发出SQL让数据库执行都会调用这个接口,速度就上不去。如果应用程序和数据库不在同一台物理机器上时,还会有一些网络延迟,不过和接口的低性能相比并不算严重。 在外部计算时,从数据库获取数据的时间常常会超过计算本身的时间。


存储过程本身的执行性能并不好。我们针对某著名商用数据库进行过测试:一句SQL可以完成的运算(比如对某个大表的字段求和),如果改用存储过程把数据一行行取出来计算,差不多会慢出一个数量级。用Java等语言从文件系统中读数做同样的计算,也会比存储过程快很多;外部计算相对容易写出并行代码,充分利用现代服务器多CPU的优势,存储过程一般都没有这个机制了。而且,如果把很多计算都放到存储过程中,并发运算时会加重数据库的负担,使本来就不快的存储过程更慢。


存储过程的性能更好,与其说是优势,倒不如说是被低效的数据库访问接口绑架所致。


目前业内还只有关系数据库有较好的交易一致性能力,适合充当OLTP业务的后台,这样从前端采集到的数据会直接进入关系数据库,这导致原始数据大量存储于数据库中。如果要对这些数据进行计算,采用外部计算方案时,取出数据太慢,总体性能就会很差;而使用存储过程,虽然计算本身不快,但数据不出库也会获得较好性能。这是存储过程不能被完全替代的主要原因和场景。


专栏作者简介







请到「今天看啥」查看全文