专栏名称: 知社学术圈
海归学者发起的公益学术交流平台,旨在分享学术信息,整合学术资源,加强学术交流,促进学术进步。
目录
相关文章推荐
研之成理  ·  顾鑫/吴明铂/周艳丽:宽温域双离子电池阴极- ... ·  20 小时前  
PaperWeekly  ·  ICML 2025 | ... ·  3 天前  
科研大匠  ·  Nature | 颠覆 !打破传统观点,“ ... ·  5 天前  
51好读  ›  专栏  ›  知社学术圈

机器学习伴以化学直觉:快速筛选储气材料

知社学术圈  · 公众号  · 科研  · 2017-12-14 18:58

正文

请到「今天看啥」查看全文


标题与摘要如下,论文PDF文末点击 阅读原文 可以获取。


Chemically intuited, large-scale screening of MOFs by machine learning techniques

(通过机器学习技术辅以化学直觉,作大规模金属-有机框架材料筛选)


Giorgos Borboudakis,  Taxiarchis Stergiannakos,  Maria Frysali,  Emmanuel Klontzas,  Ioannis Tsamardinos & George E. Froudakis


A novel computational methodology for large-scale screening of Metal–organic frameworks (MOFs) is applied to gas storage with the use of machine learning technologies. This approach is a promising trade-off between the accuracy of ab initio methods and the speed of classical approaches, strategically combined with chemical intuition. The results demonstrate that the chemical properties of MOFs are indeed predictable (stochastically, not deterministically) using machine learning methods and automated analysis protocols, with the accuracy of predictions increasing with sample size. Our initial results indicate that this methodology is promising to apply not only to gas storage in MOFs but in many other material science projects.

扩展阅读






请到「今天看啥」查看全文