专栏名称: 机器之心
专业的人工智能媒体和产业服务平台
目录
相关文章推荐
爱可可-爱生活  ·  [LG]《Probably ... ·  昨天  
爱可可-爱生活  ·  本文提出了一种名为“概率近似正确”(PAC) ... ·  昨天  
黄建同学  ·  收藏!超强的表格转 Markdown ... ·  昨天  
EWTO研究院  ·  跨境电商蓝皮书(2025):跨境电商进入 ... ·  昨天  
EWTO研究院  ·  跨境电商蓝皮书(2025):跨境电商进入 ... ·  昨天  
爱可可-爱生活  ·  【[69星]plamo-translate- ... ·  2 天前  
51好读  ›  专栏  ›  机器之心

深度 | 构建好奇的机器,Maluuba的通用人工智能探索(附论文)

机器之心  · 公众号  · AI  · 2017-01-11 13:40

正文

请到「今天看啥」查看全文


人类具有对认识和理解的天生欲望。从学习骑自行车到学习在线课程,我们通过与周遭环境互动来获得信息。最近,我们受到人类学习方式的启发,开发了一套任务,让人工智能体学会了如何通过提出问题来寻找有效信息。同时,我们也设计了一个基于深层神经网络的人工智能系统,它可以通过高效的信息搜索完成这些任务。我们相信,这些研究让人类向通用人工智能迈出了重要一步。


问正确的问题


假如你在和朋友聚餐,在饭桌上玩起了「20 个问题」游戏。现在轮到你了,你决定让大家来猜「猫」。他们开始从大范围问题切入:「它/他是活物吗?」,「它/他是一个人吗?」,「它/他是一种动物吗?」,「它是否生活在水下?」。首先猜出正确答案的人会成为胜利者,所以你的朋友们不仅需要找出正确的答案,而且还要尽量少问问题。基于简单的是或不是的回答方式,你的朋友们可以很快地缩小寻找范围,最终猜出正确的答案「猫」。


这个例子说明了人类寻找信息的过程具有的迭代性质:你正在寻找的信息永远基于你已经获得的信息。同样,为了保持效率,寻找信息的智能体必须在某种意义上理解它已经获得的信息。它必须知道自己已经知道了什么,从而可以知晓如何达成自己真正需要完成的任务。


「20 个问题」的例子也表明了交流通常是在受限的条件下进行的:每个答案都是简单的是或否(仅仅传递 1bit 信息),而且问题的数量也是有限的。在现实世界中我们对于信息的搜索往往面临同样的困局——我们通过有限的语言在有限的时间内交流。比如在网上搜索,思考为朋友挑选哪件礼物,你一开始会随便搜搜——以对方的年龄、性别和自己的钱包为导向——随后再在缩小的范围内以兴趣和推荐等条件为依据找到最终目标。


由于这种方式构建了智能行为的基础,人们对人工智能寻找信息的方法已经进行了广泛的研究,认知科学、心理学、神经科学和机器学习的角度都已被涉足。例如,在神经科学中,信息寻找策略通常被解释为对新奇,令人惊讶或不确定的事件的偏见(Ranganath 和 Rainer,2003)。信息寻找是乐趣和创造力等概念的一个关键组成部分(Schmidhuber,2010)和内在动机(Oudeyer 和 Kaplan,2007)。也有一些研究认为注意力机制是人类寻找信息的策略,通过忽略不相关的特征提高了处理问题的效率(Mnih 等人,2014)。








请到「今天看啥」查看全文