正文
完全依靠强智能的应用场景,会产生很多问题。比如自动驾驶,要想在中国这种各种奇葩状况层出不穷的交通环境下运行,一时半会儿是不行。即使是一个看起来简单的问答机器人,也没一家真正做好,你多问 siri 几句,她很快就晕了。
经常关注我微博同学会知道,我最喜欢说的一句话就是:「能自动化的,要自动化;不能自动化的,要半自动化」。
在人工智能上,这个法则似乎依然是有效的。既然现在强智能还不够强,那么为什么我们不用弱智能+人工确认的方式,来实现「半智能化」呢:用机器帮你做预选,你来做最终选择,虽然依然包含了人工干预,但却可以把生产效率提升几十倍。
有同学和我说,找不到应用深度学习的场景,这是因为太执着于强智能,想让机器独立处理所有事情;如果使用「半自动化」的思路,你会发现遍地都是场景。
最典型的场景就是「按需求进行组合搭配」。拿今天小程序举例,小程序在框架层上,将功能分隔到了page 的粒度,这使得小程序的组件会很好的被重用;而在设计上,小程序提供了统一的官方指导风格,所以不会出现太多个性化的东西。
我需要一个用户资料管理, xpm install user-profile;我需要动态 Feed 流,xpm install feed-timeline 。
然后这货就喊着要去做,还在 GitHub 上开了个坑,据说 SDK 已经写完,安装器年前能开始内测。https://git.oschina.net/xpmjs/xpm