专栏名称: 雷峰网
中国智能硬件第一媒体
目录
相关文章推荐
51好读  ›  专栏  ›  雷峰网

Drive.ai 雨中路测后,我们远隔大洋与这家硅谷创业公司聊了聊

雷峰网  · 公众号  · 科技媒体  · 2017-03-02 22:22

正文

请到「今天看啥」查看全文


*Drive.ai 联合创始人,右一:Tao Wang

雷锋网新智驾:相比于高精度地图和昂贵的激光雷达(LiDAR),Drive.ai 更多强调使用摄像头和廉价的传感器来实现自动驾驶解决方案,为什么,这是否会导致整套方案在图像计算方面有很高的负载?

Tao Wang: 首先,我们的技术研发目标在于 “安全”。其中很重要的一点就在于传感器的冗余设计:我们不会任何一种单一的传感器。同时,我们也意识到了激光雷达的高成本以及实时更新的高精度地图的不可靠性。因此,我们希望研发一种软件系统,它可以基于许多常见的传感器,包括摄像头、激光雷达、雷达等进行运算处理,以此来达到更好的可靠性和扩展性。

我们的软件核心在于 “深度学习”,深度学习的算法十分灵活,而且已经成功应用在许多领域,如计算机视觉、语音识别、自然语言处理等。我们的深度学习算法允许我们从各种不同的传感器中整合信息,避免单个噪点导致的误判。在成本控制上,我们使用市面上的普通传感器,整个自动驾驶生态的硬件价格下降已经成为趋势。同时,我们把更多精力放在软件适应性的研发上,而不是硬件的定制上,我们也省下了不少一次性投入,并具有更敏捷的开发周期。

关于计算单元的负载问题,Drive.ai 团队善于优化实时应用场景下的深度学习算法。我们的车内运算单元的功率,几乎接近台式机的水平。我们还将深度神经网络实时运行在车规级的嵌入式硬件中,这一硬件来源于与 Drive.ai 合作的 OEM 厂商之一。

雷锋网 新智驾:我们知道,诸如谷歌、特斯拉等公司已经积累了数年的自动驾驶测试数据。在这种情况下,Drive.ai 如何加速机器训练的进程并实现赶超呢?

Tao Wang: 训练一辆汽车,就如同训练一个人,它并非由纯粹的小时数或行驶里程决定的。而是需要在正确的算法框架中灌输正确的数据和知识。

我们的多传感器套件能够收集丰富的场景数据,而这在机器学习中,要比海量的、千万亿字节的驾驶视频更有价值,因为视频占用的空间极大但蕴含的增量信息却很少。







请到「今天看啥」查看全文