专栏名称: 基层麻醉网
基层麻醉网—麻醉专业永久免费网络继续教育平台缔造者!
目录
相关文章推荐
Clinic門诊新视野  ·  OCC ... ·  18 小时前  
肿瘤资讯  ·  2025ASCO丨张涛&林振宇教授:IBI3 ... ·  昨天  
梅斯医学  ·  多位医院领导因违反中央八项规定被撤职 ·  昨天  
51好读  ›  专栏  ›  基层麻醉网

院长日记 之 AI人工智能会取代医生吗?

基层麻醉网  · 公众号  · 医学  · 2017-03-16 07:04

正文

请到「今天看啥」查看全文


病理医生必须经过数年甚至十几年的训练,才能掌握足够的经验,成为一名合格的病理学家,要成为优秀的病理学家更是难上加难,在医疗资源不足的地区,想要得到诊断,都是一种奢望。

为了解决病理诊断的瓶颈,谷歌和Verily的科学家们做了一个尝试。他们将单张病理切片的图像分割成了数万至数十万个128x128像素的小区域,每个小区域内可能含有数个肿瘤细胞。随后,他们提供了许多肿瘤组织与正常组织的病理切片,供人工智能学习。最终,这款人工智能掌握了一项像素级的技巧——它能分辨出单个小区域内被标注为“肿瘤”的像素,从而将整个小区域标注为“肿瘤区”,这能有效将肿瘤组织与健康组织区分开来。

学习完毕后,这款人工智能迎来了实战。科学家们邀请了一位病理学家,并让他与人工智能进行一场比赛。这名病理学家花了整整30个小时,仔细分析了130张切片,并给出了他的诊断结果。 在随后基于灵敏度(找到了多少正确的肿瘤)和假阳性(将多少正常组织诊断为肿瘤)的评分中,这名病理学家的准确率为 73.3% 。人工智能交出的答卷是 88.5% ,完胜人类。

“FDA首次批准了一款心脏核磁共振影像AI分析软件”

2017年1月10日,据FDA官网显示,其首次批准了一款心脏核磁共振影像AI分析的软件Cardio DL,这款软件将深入学习用于医学图像分析,并为传统的心脏MRI扫描影像数据提供自动心室分割的分析,这一步骤与传统上放射科医生需要手动完成的结果一样精准。

这一基于深度学习的人工智能医学影像分析系统已经进行了数以千计的心脏案例的数据验证,该算法产生的结果与经验丰富的临床医生的分析结果结果是不相上下的。

据悉,这款人工智能心脏MRI医学影像分析系统不但得到了FDA510(k)的批准,还得到了欧洲的CE认证和批准,这标志着该软件将被允许用于临床。

《自然》(Hazlett et al. 2017)重磅:AI在儿童自闭症早期诊断上完胜医生!

近期,在北卡罗来纳大学(UNC)教堂山分校精神病学家Heather Hazlett的带领下,人工智能在疾病诊断领域又下一城。她们开发的深度学习算法,在预测2岁前的自闭症高危儿童(有个自闭症哥哥或者姐姐)是否会在2岁之后被诊断为自闭症上, 88% 的准确度远超准确度只有 50% 的传统行为问卷调查法(Charman 2014)。







请到「今天看啥」查看全文