缺氧和营养不足是肿瘤微环境的主要特征。营养缺乏,尤其是氨基酸,如色氨酸,能够激活调节T细胞活性的综合应激反应。吲哚胺2,3双加氧酶(IDO)是一种细胞内酶,可以催化色氨酸降解为犬尿氨酸。肿瘤微环境内的肿瘤细胞和骨髓细胞均可以表达IDO,导致T细胞增殖和存活受阻。
近年来,Ninomiya教授及其同事证实,IDO表达也可以抑制CAR T细胞。特别地,他们表示,CD19 CAR T细胞无法控制CD19+ IDO表达的肿瘤进展。犬尿氨酸积累会抑制CAR T细胞扩增,细胞毒性和细胞因子的分泌,这表明IDO阳性耐药肿瘤可能存在这种机制。
有趣的是,他们表示,氟达拉滨和环磷酰胺可以减少IDO表达,进而改善CAR T细胞治疗功效。CAR T细胞联合IDO抑制剂用药可能是化疗和免疫治疗无效的恶性肿瘤患者的重要选择。
另外,肿瘤微环境的代谢应激可能能够调节T细胞代谢,分化和效应功能。事实上,肿瘤浸润淋巴细胞修饰自身代谢是对缺氧作出的反应,这也是实体瘤的特征。
而耐人寻味的是,共刺激结构域不同的CAR T细胞代谢途径不同,这反过来也说明了肿瘤微环境的可变持续性。
Kawalekar教授及其同事开展的研究表明,相较于携带有CD28信号结构域的CAR T细胞,4-1BB CAR T细胞提高了线粒体的生物合成,促进中央记忆表型CAR T细胞的生成,具有生存优势。相较之下,CD28-CAR T细胞可以产生效应记忆表型,增强糖酵解作用。
这项研究强调了工程T细胞在免疫抑制肿瘤微环境中存活和衰竭设计的意义。
改变肿瘤微环境中的代谢成分只是使CAR T细胞潜能最大化释放的一种可能性。Newick博士及其同事开展的关于抑制蛋白激酶A(PKA)的最新研究得出了相似结论。
PKA是肿瘤微环境中产生的另外两种免疫抑制因子:前列腺素E2(PGE2)和腺苷的下游效应子。不同的研究显示,以上两种免疫抑制因子能够有效抑制T细胞的增殖和活化。
研究人员通过正在表达的RIAD(调节I亚基锚定干扰物)肽干扰PKA对脂伐的锚定。RIAD肽能够取代PKA和ezrin蛋白的关系,与腺苷酸环化酶紧密结合,合成一种必需蛋白质。
相较于间皮素导向的CAR T细胞,间皮素导向的CAR-RIAD T细胞在体内表现出更高的浸润性,持久性和抗肿瘤活性。另外,RIAD表达导致趋化反应增强,受CXCR3表达的影响,具有更好的粘附性。随着这种方法转化为临床试验,RIAD肽的免疫原性可能成为一个问题。
另外一种可改变肿瘤微环境的方法是通过促进内源性免疫应答募集,增强CAR T细胞抗肿瘤反应。Curran教授及其同事已经通过CAR T细胞CD40L组成型表达验证了这一方法。
他们表示,该策略改善了CAR T细胞毒性,降低了PD-1表达,改善了CD40阳性滤泡淋巴瘤系统模型中DC抗原的呈递功能。这些机制可能与Gajewski博士及其同事所述的STING通路一致(如上)。
因此,靶向肿瘤免疫抑制群体,如PGE2和/或T细胞,改变肿瘤微环境的反应是提高免疫治疗功效的好机会。