专栏名称: 爱数据LoveData
中国统计网(www.itongji.cn),国内最大的数据分析门户网站。提供数据分析行业资讯,统计百科知识、数据分析、商业智能(BI)、数据挖掘技术,Excel、SPSS、SAS、R等数据分析软件等在线学习平台。
目录
相关文章推荐
51好读  ›  专栏  ›  爱数据LoveData

【社群精选24】认清数据分析的边界

爱数据LoveData  · 公众号  · BI  · 2019-10-17 16:10

正文

请到「今天看啥」查看全文



通过数据库中的记录,你能够充分了解你的业务吗?答案是否定的。说白了,数据库只是记录了发生在业务链条上的行为,但行为的结果并不代表业务的全部。

举个例子,通过用户的使用行为数据,就能知道用户的体验吗? 并不能,我们只是根据用户的“行为结果”猜测他使用产品体验的好坏。

真正的用户感觉,在他们的心里,很难通过既定的使用路径和产品功能体现出来。

那么,数据库不能记录的信息,怎么获取呢?答案其实很简单,通过外部手段,创造条件去获取。概括为“调查”和“实验”两个词。

例如,用户体验不能量化的问题,直接问不就好了?调查分为访谈和问卷调查两种方式,每种方式都需要落地成可量化的结果。

问卷调查建议规律性地长期进行,连续收集的数据在时间维度上可比,价值远远大于单次的问卷调查。

实验的方式也是一种创造数据的手段。通过实验组和对照组,创造出一个对比的条件,进而量化出差异,最终形成可靠的判断。


不要分离多重因素的影响


我们在运营中最容易犯的错误就是试图用一个“宏观指标”的变化评估某个运营动作(策略的改变、产品的改变或者活动的改变)的影响。

幸运的时候,某个运营动作对业务的影响非常大,那么从指标中能反映出来。但绝大多数时候,不管是策略的变更还是产品的改进,对业务全局的影响都是有限的,指标的变化并不敏感。

另一个角度,业务指标的变动往往是多种运营动作共同施加的结果,这种影响并不能简简单单地分解为“A+B+C+…”或者“A×B×C×…”。

有些因素叠加可能相互放大影响,有些则可能相互抑制,宏观指标只是众多影响的结果,内部的影响机制是黑箱。







请到「今天看啥」查看全文