专栏名称: 哲学园
哲学是爱智慧, 爱智慧乃是对心灵的驯化。 这里是理念的在场、诗意的栖居地。 关注哲学园,认识你自己。
目录
相关文章推荐
51好读  ›  专栏  ›  哲学园

丘奇—图灵论点与人类认知能力和极限

哲学园  · 公众号  · 哲学  · 2017-09-13 07:12

正文

请到「今天看啥」查看全文


二、不可解性与人类认知的可数无限性


我们认为,丘奇—图灵论点以及可计算性理论乃至整个数理逻辑科学,在哲学上,尤其在认知哲学上均有着极其重大的意义。可以说,它们在最抽象的意义上有效地解释了人类认知的诸多现象和特征。特别是对人的认知能力和极限的认识有非常重要的启示。现实中,许多人似乎从来就没有经过认真地思考便不由自主地接受了人的认知能力是无限的、没有根本性限制的观点。我们认为,对于任何一个受了人的认知能力是无限的这种思想影响的人,当他面对20世纪许多最深刻和最令人难忘的“限制性或否定性”科学结论时,他都不可避免地要陷入一种尴尬的境地。通常人们最熟悉的这种限制性成果大概要数哥德尔不完备性定理和海森柏测不准原理。不过我们这里要提到的是可计算性理论中的丘奇—图灵论点。从表面上看,丘奇—图灵论点是一个肯定性命题,但也正是基于这个论点,人们才有了对什么是不可计算性的明确认识,并在此基础上相继发现了一大批不可计算或不可判定的问题或命题,丢番都方程有无整数解问题、半群(群)的字问题、四维流形的同胚问题等等就是其中的典型代表。这些事实的确定,逐渐让人们体会到,在数学和逻辑领域中,人的认知能力是有限度的。


首先,有了可计算性的精确定义,也就等于有了不可解性的精确定义,即对于一个问题,如果我们证明了其“没有相应的一般递归函数”或“没有相应的一般递归谓词”,那么就可以确切地说该问题是不可解的。这是在数学史上人类第一次认识到,从逻辑意义上讲数学中存在着不可解的问题。以往人们总是以为,任何一个精确表述的数学问题,总是可以判定它是对还是错,是有解还是无解。暂时没有解决,以后也一定会解决。现在看来,有一些问题是根本就不存在算法的,这无疑是对人类智力的一次最深刻、最严峻的挑战。在我们看来,不可计算或不可判定问题的存在(以及哥德尔不完备性定理),不仅是对计算机的限制,而且是对我们人类自己的限制——对人类认知的限制。


其次,根据计算复杂性理论与丘奇—图灵论点,数学家把各种数学问题从其复杂性、难解性的角度作了如下一个分类:一是现实可解问题,即具有多项式复杂性算法的可以有效地解决的P类问题;二是理论上可解但现实不可解问题,包括仅有指数复杂性算法的较难的NP类问题、特殊的最难解的NPC类问题及“NP难的”问题和完全无法有效地解决的超NP类问题;三是理论上不存在任何算法的被证明为不可解的问题。这一结论无疑使任何数学问题都是可解的、甚至都是具有有效算法的幻想彻底破灭了,而这意味着:当我们费尽心思去求解一个数学问题时,我们可能是在求解一个不可解的问题;当我们绞尽脑汁去判定一个数学命题时,我们可能是在判定一个不可判定的命题。我们想要解决的问题可能已经包含了某些超越我们的智力所能把握的困难。而且由于数学家们还认识到,可计算函数共有可数无穷多个,而全体函数的个数却是不可数无穷的,因此不可计算的函数要比可计算的函数多得多(多无穷多个)。也就是说,在理论上,可以求解的问题尽管是无穷的,但不可求解的问题更是无穷的,而且是更高层次的无穷。这便是可计算性理论等数学理论告诉我们的一个铁的事实。


最后,数学和科学是不完备的。基于哥德尔不完备性定理——没有一个演绎推理系统能够回答所有的利用该系统的语言所描述的问题。每一个足够有力量的、一致性的逻辑系统都是不完备的——人们已经认识到数学是不完备的。同样,自然科学也是不完备的——自然科学的不完备性主要表现在存在着许多不可解的科学问题和一些否定性的科学结论。在一篇文章中,我们一方面根据人的认知的不完备性说明数学、科学的不完备性,另一方面又根据数学、科学的不完备性说明人的认知的不完备性。这似乎陷入了一个矛盾的循环论证之中,但我们认为,与其把这视为一个矛盾的循环论证,毋宁把它看作一个真实的现状。不完备的人创造了不完备的数学和科学,这不显得更真实、更符合逻辑吗?人类认知的不完备性正好通过自己的不完备的创造物得以显现,自己的创造物正是反观自己的最好镜面。



由此我们得到启示:(1)并不是每一个问题都是可求解的,一个问题没能求解,并不总是因为人们没有找到求解它的方法。我们相信,有些问题无法求解、是由该问题的本性所至,即使将来人类的思维更加发达,技术更加先进,这些问题也依然是不可解的,或依然是没有求解它的方法的。(2)理论上可解决的问题并不一定可现实地解决,因为任何问题都有它的时间复杂性和空间复杂性,时间和空间的极限就是求解问题的极限。在我们看来,理论上可解但现实上不可解问题的存在,更主要是对人类计算技术的挑战。无疑,计算不论是现代计算机的计算,还是中国古老的算盘计算,或是人脑的计算,它们在本质上都有一个物理的操作运行过程。这一过程的完成需要最起码的运行时间和计算装置(空间),即计算存在一个基本物理极限。计算的时间复杂性和空间复杂性的存在正是从时间和空间两个方面对计算技术的深刻挑战。(3)人类认识(认识主体)的无限性是可数的、不完备的,而有待人类去认识的对象(认识客体)的无限性是不可数的、完备的。也就是说,尽管人类的认识是无限的,但人类认识(认识主体)的无限性远远小于有待人类去认识的对象(认识客体)的无限性。因而人类总有着永远也无法穷尽的世界奥秘,世界上存在不可知的部分或客体。换句话说,也就是人类不可能成为万能、全知的上帝。注意,我们这里并没有否认人类认识的无限性,人类的认识确实处于无限的发展过程之中。但是,如今从丘奇—图灵论点对人类认知能力的限制,我们进一步看到,人类认识的无限性是一种递归无限性,有待人类去认识的对象的无限性是一种非递归的无限性。


三、丘奇—图灵论点对人类认知能力的限制


我们认为,丘奇—图灵论点最根本的哲学意义,就在于它表明了人类认知的一种计算主义特征,预示了人类的认知能力和极限,即它不仅是对机器认知的限制,而且是对人脑认知的限制。在具体论述前,我们首先明确一个前提,大家知道,认知科学的一个被广泛接受的方法论原则是,对认知和智力的理解应从三个不同的层次来分析研究:第一个层次是最抽象的“计算理论”层次,它关注的主要问题是:计算的本质是什么?或认知的本质是什么?;第二个层次是“表征和算法”的层次,它关注的主要问题则是:计算或认知的具体方法是什么?是如何操作的?完成计算任务的效率如何?第三个层次是“计算的物理实现”层次,它关注的主要问题又是:实现计算的物质载体是什么?它是如何运转的[1](P24-25)?我们的论点主要是在最抽象的第一个层次即计算的层次上言说的。当然,也不排除其他两个层次。


确切地说,丘奇—图灵论点具体地表明了:(1)人的认知结构是一种递归结构;(2)人的认知过程是一种递归计算过程;(3)人的认知能力是受递归规律限制的,即人只能在递归的意义上认知事物。我们不妨把它称为“递归认知假说”。基于篇幅所限,这里我们仅就“递归认知假说”的第三部分做一论述。我们说人的认知能力是受递归规律限制的,人只能在递归的意义上认知事物,这包含两个含义:一是指人只能认知(计算)具有递归结构或递归性质的事物;二是指对于非递归结构或非递归性质的事物,人只能做递归性的认知。何以这样说呢?其实只要接受了认知计算主义纲领,上述观点便就是很自然的推论。因为认知计算主义纲领中所说的“计算”就是“递归计算”或“图灵计算”。西方认知计算主义学派的基本口号是“认知就是计算”,说的更具体些更确切些,实际上就是“认知就是递归计算”。既然认知就是递归计算,那么说人的认知结构是一种递归结构,人的认知过程是一种递归计算过程,以及人的认知能力是受递归规律限制的,即人只能在递归的意义上认知事物,便也就是很自然的了。不过下面我们还是给出我们何以提出这一更加具体明确的看法的几点理由;







请到「今天看啥」查看全文