专栏名称: AI科技评论
「AI科技评论」是国内顶尖人工智能媒体和产业服务平台,专注全球 AI 业界、学术和开发三大方向的深度报道。
目录
相关文章推荐
51好读  ›  专栏  ›  AI科技评论

北大发布新冠疫情可视化分析,未来北上广防控压力不小

AI科技评论  · 公众号  · AI  · 2020-02-11 14:12

正文

请到「今天看啥」查看全文



人口流动与疫情的不同阶段


人口流动是疫情发展第一阶段输入型传染的主要因素,为了具体描述其影响,我们使用百度迁移所提供的人口流动数据[2],通过可视化春运期间从武汉流向全国各省市的人口规模(不包含港澳台数据)和全国感染病毒人数的分布,直观地观察两者间的联系。

疫情由湖北武汉华南海鲜市场开始传播,逐渐蔓延至全国。 中国大陆各省份的颜色,反映了该省的确诊人数及来自武汉市的输入人流量。

图2.1. (左) 由武汉市流向各省市的输入人流量,(中) 1月31日各省市确诊感染总人数,(右) 2月9日各省市确诊感染总人数

通过对比图2.1(左)和图2.1(中),我们可以看到,在疫情初期,各省市感染总人数与春运期间由武汉市的输入人流量呈现强相关性; 需要指出的是,武汉1月24日封城,考虑平均潜伏期7天,1月31日湖北外省市的确诊人群应该基本为输入型感染。 但随着时间的推移,确诊人数分布图则发生了一定的变化(2.1(右))。 我们推断,武汉封城之后,二次传染所造成的病毒传播越来越占主导地位,和各省市的人口密度,以及管控措施等密切相关。


各省市传播差异

为了更具体分析各省市之间的疫情传播差异,首先,我们针对湖北以外的省市,以从武汉输入人流规模为基准,与当地截止到2月9日的确诊人数进行对比。 见图2.2:


图2.2. 湖北以外省市的武汉人口流入规模(相对值)与其确诊感染人数

从图2.2可以发现,各省市的武汉输入人流量规模与其确诊人数之间存在正相关,如图2.1(中)一样,验证了人口流动是疫情初期传播的主要原因之一。 然而,有些异常值出现,代表了疫情传播比较特殊的几个省份。

为了更好地观察这些差异,我们对确诊人数做数据归一化,将每个省市确诊总人数分别除以武汉输入人数规模和该省市总人口,得到两个曲线,见图2.3:

图2.3.截止2月9日,各省市确诊人数分别除以武汉输入人数规模以及该省市总人口数

对于单人感染率较高的省市(图2.3 蓝色曲线),如浙江省、北京市、上海市、广东省,虽然确诊人数不是最多,但是发病率却相对较高,原因是这些省市都属于商务旅游集中、人流密集、流动性大的城市,因此造成传染性高于其他地区。 有些省份公布了二次传播人数,黑龙江省的二次传染比例最高,有报道表示,至2月6日,黑龙江发生48起聚集性疫情传播,共导致发病193例。

二次传播在疫情传播第二阶段中占主导地位,对于目前聚集性传播的高发地区,采用更严格的隔离措施避免疫情的爆发型增长,是行之有效的方法。 但后续疫情传播的走向具体如何,哪些因素更为关键,我们接下来采用传染病传播模型来做数字模拟和分析。

3、疫情传播模型

基础的SEIR模型


1月31日,国际知名医学期刊《柳叶刀》发表了中国香港科学家的工作[3]。 在该文中,作者采用了传染病动力学中经典的SEIR模型来进行模拟。 该模型将人群分为易感人群(Susceptible)、已被感染但无症状处于潜伏期的人群(Exposed)、已表现出症状但未被隔离的患病人群(Infectious)、康复人群(Recovered)四类(模型把死亡人数也归到R中)。 并假设他们之间按一定概率转移。 其状态转移图如下:








请到「今天看啥」查看全文