专栏名称: 阿里研究院
阿里研究院依托阿里巴巴集团海量数据、深耕小企业前沿案例、集结全球商业智慧,以开放、合作、共建、共享的方式打造具影响力的新商业知识平台。 阿里研究,洞察数据,共创新知! 官方网站http://www.aliresearch.com/
目录
相关文章推荐
AMZ123跨境电商  ·  亚马逊每日一店421丨毛利高达70%?索环工 ... ·  3 小时前  
跨境电商Eason  ·  千磨万击还坚劲,任尔东西南北风,eBay,作 ... ·  11 小时前  
电商行业  ·  还在讨论薇娅复出的 已经过时了 ·  昨天  
蛋先生工作室  ·  2025年6月6日:全国生猪、豆粕、玉米价格 ·  昨天  
蛋先生工作室  ·  2025年6月6日最鸡蛋收盘价 ·  2 天前  
51好读  ›  专栏  ›  阿里研究院

治理之智 | 周汉华:论我国人工智能立法的定位

阿里研究院  · 公众号  · 电商  · 2024-10-25 12:27

正文

请到「今天看啥」查看全文



新一代人工智能的快速发展,尤其是2022年底横空出世的ChatGPT,使如何定位人工智能及其立法成为无法回避的重大时代问题。受我国互联网治理体制的影响,实践中快速形成两种不同的立法定位。


(一)科技、产业发展定位及立法部署


2017年,作为世界上最早制定人工智能发展战略规划的国家之一,我国发布《新一代人工智能发展规划》(以下简称《发展规划》),从加快建设创新型国家和世界科技强国的角度进行系统部署,明确科技引领、系统布局、市场主导、开源开放四项原则,要求以提升新一代人工智能科技创新能力为主攻方向,发展智能经济,建设智能社会,维护国家安全。在部署推动人工智能科技与产业发展的同时,《发展规划》对人工智能作为颠覆性技术可能带来改变就业结构、冲击法律与社会伦理、侵犯个人隐私、挑战国际关系准则等问题有非常深刻的认识,明确人工智能法律法规、伦理规范和政策体系的“三步走”建设目标,列举了需要具体立法的领域。


《发展规划》发布之后,科技部、工信部、国家发改委、公安部、中科院、国家标准委等相继制定推动人工智能发展、防范人工智能风险的各种政策与规范性文件,如《促进新一代人工智能产业发展三年行动计划(2018—2020年)》《人形机器人创新发展指导意见》《国家车联网产业标准体系建设指南(智能网联汽车)》《科技伦理审查办法(试行)》等。上海、深圳制定了促进人工智能产业发展的地方性法规,浙江、广东、北京、成都、杭州等多地制定了促进人工智能研究与产业发展的政策性文件。国务院2023年、2024年连续两年将人工智能法草案列入年度立法计划。十三届、十四届全国人大常委会立法规划均将人工智能立法列入其中。


推动科技、产业发展定位的人工智能立法活动,体现出发展优先,以改革创新促发展,有效防范和化解风险的立法思路,也是当前各国对人工智能立法定位的共同做法。不过,由于新一代人工智能(《发展规划》称之为“自主智能”)仍然属于新生事物,没有现成经验可资借鉴,这类立法活动仍然处于萌芽和探索阶段。党的二十届三中全会决定要求,“完善推动新一代信息技术、人工智能等战略性产业发展政策和治理体系”,为人工智能立法和治理体系完善明确了方向。


(二)信息内容管理定位及立法


新一代人工智能尤其是ChatGPT所具备的内容生成能力,使得从互联网信息内容管理角度来界定和规范人工智能成为另一种立法思路。在ChatGPT推出之后不到一年,我国互联网治理主管部门迅速出台《生成式人工智能服务管理暂行办法》(以下简称为《暂行办法》),被学者称为世界上第一个生成式人工智能法律规范。迄今为止,尚未有任何其他主要国家从这个角度来定位和规范人工智能。通过与《中华人民共和国网络安全法》《中华人民共和国个人信息保护法》和《生成式人工智能服务安全基本要求》(以下简称《安全基本要求》)等法律和规范性文件衔接,《暂行办法》对我国人工智能的管理部门、执法主体、法律依据、执法程序、法律责任等予以明确,突出体现了生成内容全覆盖、生成过程全流程管理两大特点。


按照《暂行办法》第2条,利用生成式人工智能技术向我国境内公众提供生成文本、图片、音频、视频等内容的服务均属于其适用范围。2023年4月发布的《暂行办法(征求意见稿)》第6条规定,利用生成式人工智能产品向公众提供服务前,应当向国家网信部门申报安全评估,并履行算法备案和变更、注销备案手续。这一规定体现了将生成式人工智能服务提供者作为信息内容生产者管理的基本思路。这一条经修改后成为《暂行办法》第17条,并加上一个申报安全评估和备案的前提条件——“具有舆论属性或者社会动员能力”。但是,第17条恰恰说明不具备前提条件的人工智能服务仍然在该规章适用范围内,只是不需要申报安全评估和备案。由于舆论属性或者社会动员能力的标准与范围均具有一定的模糊性,目前大模型备案实践中,是否需要备案,需要与主管部门咨询沟通,面向公众的大模型均可能被认为具有舆论属性或者社会动员能力。


我国对于互联网信息内容有成熟的管理经验,《暂行办法》将预训练、优化训练等训练数据处理活动纳入管理范围,构筑事前、事中、事后全流程管理的整套制度,包括法治与其他手段并用、部门分工负责、分类分级监管、社会共治、严格平台责任、注重未成年人保护、强化安全评估与备案、违法内容处置、加强对境外服务的管理、严格法律责任追究等。尽管《暂行办法》囿于立法权限只能要求大模型安全评估和算法备案,但《安全基本要求》通过严格的规定,实际上使安全评估成为事实上的事前审批。并且,《安全基本要求》将管理环节从应用向研发延伸,比以往的全流程管理链条更长。比如,面向特定语料来源进行采集之前与之后,应当对该来源语料进行安全评估或核验,语料内容中含违法不良信息超过5%的,不应采集该来源语料或使用该语料进行训练;如需基于第三方基础模型提供服务,应使用已经主管部门备案的基础模型等。


科技、产业发展定位的现行规定主要是鼓励类、促进类柔性政策文件,高层级立法尚未启动。相比之下,《暂行办法》已经形成从法律、规章到技术文件一整套较为完备的规范体系,对相关主体更有现实意义和影响力。


三、信息内容管理定位的问题分析


(一)信息内容管理定位的由来


ChatGPT出现前后,国外出现的几起深度伪造名人的网络事件,引发各界高度关注。《暂行办法(征求意见稿)》发布前后,法学界较为密集地发表了一批讨论信息内容与意识形态安全方面的研究论文,这些论文的关注重点与之前对人工智能生成内容的研究有明显的差异。


有学者担心,“由于大模型具有的重大影响及其本身难以克服的局限性,可能会给信息内容治理带来显著风险”。有学者忧虑,“以ChatGPT为代表的生成式人工智能基于西方价值观和思维导向建立,其回答也通常迎合西方立场和喜好,可能导致意识形态渗透”。有学者认为,人工智能生成内容的主要风险“很大程度上来源于生成式人工智能被用于‘深度伪造’的能力”。有学者强调,“生成式人工智能可以通过其强大的算力合成假文章、生成假新闻等制造各种事实性错误,此外,不法人员会通过利用深度合成技术生成的虚假信息,来实施侮辱诽谤、造谣传谣、侵犯个人隐私甚至是通过深度合成技术仿冒他人实施诈骗等行为,严重扰乱网络传播秩序和社会秩序,这些因人工智能生成内容导致的滥用风险给当前的网络治理工作带来了极大的困难”。有学者断言,“ChatGPT等生成式人工智能在掌握先进技术基础上诱发了一系列辐射广泛、渗透全面、不易掌控的意识形态风险”。


对于类似研究结论,已经有学者指出,有关风险的研究与预测“大多还是停留于猜想和假设阶段,尚未实际发生,关于这些风险的发生概率同样未有定论”。其实,如果将我国对境外大模型的管理制度纳入考虑,很多悲观预测基本是出于想象。在大是大非问题上,国内大模型服务提供者不可能有半点疏忽。然而,学术界的这种担心,一定程度反映着全社会面对陌生事物的共同焦虑和不安,也直接催生了信息内容管理定位的形成。


(二)信息内容管理定位的问题分析


大模型的核心技术机制,在于通过从语料中学习到的规律(在数学上就是概率)来生成文字,“本质上,机器学习系统就是进行观察和预测的程序”。这样,就可能会生成符合规律(可能性)但不符合现实的内容,也就是这个领域常说的幻觉(Hallucination),而幻觉只能降低不能完全消除。加上受限于发展阶段、语料的数量与质量等各方面条件的限制,大模型发展之初生成内容的准确性、可靠性不可能尽善尽美,“一本正经地胡说八道”现象不可避免。


在我国,信息内容安全有比较明确的共识和边界,核心是意识形态安全,集中体现为《网络信息内容生态治理规定》所界定的20类“违法不良”信息。上海交通大学清源研究院生成式人工智能研究组2023年曾经评估国内八家国产大模型在生成内容真实性方面的表现,发现国产大模型在回答问题时存在捏造事实和过度迎合用户的现象。例如,虚构不存在的法律条款来回答用户的法律咨询,编造疾病的治疗方案来回复患者。有学者测评发现“ChatGPT更容易出现中文的常识性和知识性错误”,“ChatGPT可能编造虚假信息,并且其输出通常是真实信息与虚假信息的混合”。不过,仔细分析类似测评报告可以发现,测评中发现的这些问题绝大部分并不属于违法不良信息,而是技术能力不成熟导致的回答不正确现象。随着技术的成熟,技术本身就能够很大程度上解决这些问题。将大模型存在的准确性、可靠性问题全都归为信息内容风险,明显存在对风险程度的夸大。


由于网络信息来源的多样性,包括各种网络百科在内的网络信息,都是不同用户提供的。传统搜索引擎搜索出来的结果,并不能保证每条信息的准确性和可靠性,网络用户必须结合其他信息来源、生活常识等做出判断与选择。即使官方发布的信息,也只是“信息”,而并不是一定事实。对于大模型的准确性与可靠性,服务提供者有强烈的内在激励去不断完善,以形成自己的核心竞争力。人工智能预训练语言模型的发展呈指数型增强,参数规模的增长也呈现这种规律。双指数型增长意味着改进的速度非常快,“开始的时候增长速度很慢,几乎不被觉察,但是一旦超越曲线的拐点,它便以爆炸性的速度增长”。将对信息内容管理的特定要求延伸适用于所有生成内容,不但存在以偏概全的前提缺陷,也会抑制或者阻断服务提供者的内在激励。人工智能需要尽可能扩大语料来源和规模,在不断的训练中提高准确性和可靠性。《安全基本要求》适用于所有生成内容,生成过程全流程管理,会导致合法合规训练数据不全面甚至枯竭,更加远离提高准确性和可靠性的目标。在国际地缘政治格局发生巨大变化的背景下,这些只适用于国内大模型的管理措施,还会拉大国内外人工智能发展的差距。


信息内容管理完全不同于科技经济管理,将人工智能生成内容全部纳入信息内容管理,会进一步加剧近年来网络安全与信息化领域推荐性标准强制化、技术文件效力法律化、备案成为事实上的许可、法律救济途径收窄、不同管理措施叠加等一系列问题,影响营商环境和市场主体信心。由于人工智能科技创新的特点,由管理部门事前审批并不合适。管理重心全部聚焦于信息内容管理,还会使人工智能产生的大量新型风险游离于决策视野之外。因此,完善人工智能治理体系,必须按照党的二十届三中全会决定“完善生成式人工智能发展和管理机制”的要求,严格界定信息内容管理的领域,实现信息内容管理与科技经济管理的分离,以实现治理机制的精准化、科学化。


(三)生成式人工智能为违法不良信息治理带来前所未有的机会


如前所述,进入自媒体时代之后,人人都是“总编辑”,内容生产从传统的PGC(Professional-Generated Content,专业生产内容)向UGC(User-Generated Content,用户生产内容)转变,通过作为双边市场的平台进行传播。由于用户数量巨大,违法不良信息难以追溯,即使追溯到也很难问责。正是在这种背景下,我国设立网信部门并以平台主体责任为中心全面构建网络综合治理体系。然而,由于平台主体责任属于第三方责任,在流量经济的诱惑下,平台难免会以技术能力不足等各种理由打“擦边球”。


生成式人工智能的出现,使内容生产再次发生根本性变化,从UGC向AIGC(Artificial Intelligence Generated Content,人工智能生成内容)转变。由数量有限的大模型生成内容,某些特征更类似于重新回归到PGC时代,大模型成为“下一代网络入口”和“超级媒介”。大模型向使用者提供服务,不具有双边市场特征,不能再打“擦边球”。由于需要巨大的投入与技术能力支撑,基础大模型的数量会非常少,垂直应用大模型的数量会多一些。无论如何,相比于海量的自媒体用户,大模型服务提供者的数量有限,执法部门完全有能力监管这些主体并发现违法行为。并且,与小范围编造、传播违法不良信息难以被追究违法责任的自媒体用户相比,大模型生成违法不良信息一旦被追溯到会面临严重的违法后果,被追究直接责任而不是第三方责任。这样,大模型服务提供者会内生防范违法不良信息的强大动力,主动呵护大模型。即使大模型因为技术不成熟或者使用者的恶意诱导、攻击生成一些违法内容,受众只是终端使用者。终端使用者如果将生成内容加以传播,不但会受到现行网络综合治理体系的约束,还会自我暴露其恶意诱导、攻击行为。内容生产的这些根本性变化,为实现党的二十届三中全会决定提出的“推进新闻宣传和网络舆论一体化管理”提供了有利的外部条件。


从美国和欧盟的经验 来看,新的管理方式主要是两种,一种是要求大模型对其生成内容加标识(水印),另一种是引入对抗式的“红队”机制。对大模型生成的图片、音频、视频、文本等添加标识,尊重大模型使用者和其他网络用户的知情权,使其知晓生成或者再次传播的生成内容属于合成信息而非事实本身,由此使生成内容带上“自净”功能。添加标识有助于执法部门对各种生成内容溯源并问责,维护市场秩序与社会秩序。对于大模型服务提供者而言,添加标识能提升生成内容的辨识度和市场影响力,并不完全是负担,也会有相应的收益。


2023年,美国总统拜登发布14110号人工智能行政命令,强调“本届政府会帮助开发有效的标识和内容溯源机制,以便美国人民能够判断内容什么时候是由人工智能生成的,什么时候不是。这些措施会奠定极其重要的基础,既解决人工智能带来的风险又不过分降低其好处”。欧盟在制定人工智能法过程中认识到,“各种人工智能系统会产生大量的合成内容,使人类越来越难以与人类生成的和真实的内容区分开来。这些系统的广泛可用性和不断增强的能力对信息生态系统的完整性和信任产生重大影响,增加错误信息和大规模操纵、欺诈、假冒和消费者欺骗的新风险”。为此,欧盟《人工智能法》第52条1a款规定,“生成合成类音频、图片、视频或者文本内容的人工智能系统(包括通用人工智能系统)提供者,应保证人工智能系统的输出以机器可读的格式进行标识并可发现为人工生成或控制”。第52条第3款规定,“生成或者控制面向公众发布、关涉公共利益事务文本的人工智能系统部署者应披露其文本为人工生成或控制”。另外,对于高风险的人工智能系统,欧盟《人工智能法》第49条还详细规定了对系统添加评估合格标识的要求。对生成内容添加标识,发挥其自净、溯源与激励等多重功能,是自媒体时代无法想象的治理机制。








请到「今天看啥」查看全文