正文
刚开始进入数据行业时,我一直秉承着这样一个理念:在“假设数据都是可获取的”基础上,思考问题。随着整个社会数据化程度的进一步加深,以及人与物之间的高度互联,以前很多信息的盲点被快速解开。由不同领域积累下的数据形成的“完美信息”渐露端倪,这其实是一个数据从量变到质变的过程。这一“完美信息”具有无限潜能,足以让人工智能所向披靡,催生各种智能场景,并让其如潮涌至。
智能时代,秉承“假设数据都是可获取的”这一思维方式,才可让你比别人更胜一筹,从而做到心中有数。
我在阿里时就曾参与设计了一款智能营销工具 “Look-Alike”。通过机器学习,我们可以利用过去积累的客户消费特征(每个客户有高达上万个标签),作出精准推送广告的决策。有别于过去的广告规划,我们不会问广告主如何描述其目标客户群,而是让广告主给出500个喜欢某品牌的用户名单,我们就可以帮他找出5000个,甚至5万个类似的客户。这种方法可以在几个小时之内快速“扫描”出最有效的营销方案。
通过这项技术,我们基本可以实现让广告主喜出望外的精准广告投放效果。
但问题是,这种产品真的能为广告业及阿里带来新的价值吗?
这还只是大数据革命的开端,大家可以拭目以待!
现实中,我们从数据收集、整合、判断,以至行动、再到反馈的过程并不完美,而形成数据闭环系统的阻力往往是人为因素居多。谷歌无人驾驶汽车项目的伟大之处正是给了我们重要的启发,让我们意识到自动化及智能化所需要的数据闭环系统是如何做到了既封闭又开放,其中的里应外合正是未来的发展趋势。我在阿里就经历了4个不同阶段:数据驱动决策、数据驱动流程、数据驱动产品、数据驱动业务。在此过程中,你会发现,数据驱动的目标越模糊、数据越零散、人的互动环节越多,智能项目开展起来就越吃力。
如前所述,数据资源的积累是发展数字经济的前提。企业在向往智能时代所带来的机遇的同时,更要为企业的未来目标制定数据战略。企业不仅要关注自己现在有什么数据,更要了解未来会欠缺什么。然后,再去探讨欠缺的部分有多少可以靠自己补充,有多少需要求助他人、与他人合作以实现补充。有人把数据比喻为电能,这个比喻很生动,但与电能不一样的是,数据是可以被重复使用的。
在阿里时,我是怎么处理部门间数据互通这件事情的呢?
很简单,首先是找出大家有意愿共用的部分,我称其为企业内的公共数据,然后安排资源把这一部分先建设起来。选择公共数据也有一定的技巧,简单归类就是:各部门已经在高频率但低效率的单线流通的数据,被野蛮重复复制到各部门的相同数据,大家都有意愿首先标准化的数据。
当这些带有公共性质的核心数据建立起来之后,大家就能更容易地感受到数据高质量流通的意义及好处。
要保证这些数据的质量和新鲜度也相对变得容易了。
所以从战略意义上来说,第二使用权的合规性变得非常微妙。大数据背后的逻辑是数据积累越多越好,在过去两三年,很多企业都相信有了大量数据资源后,就能对企业的业务产生更大价值。