正文
在介绍微信红包系统的技术难点之前,先介绍下简单的、典型的商品“秒杀”系统的架构设计,如下图所示。
该系统由接入层、逻辑服务层、存储层与缓存构成。Proxy处理请求接入,Server承载主要的业务逻辑,Cache用于缓存库存数量、DB则用于数据持久化。
一个“秒杀”活动,对应DB中的一条库存记录。当用户进行商品“秒杀”时,系统的主要逻辑在于DB中库存的操作上。一般来说,对DB的操作流程有以下三步:
-
锁库存
-
插入“秒杀”记录
-
更新库存
其中,锁库存是为了避免并发请求时出现“超卖”情况。同时要求这三步操作需要在一个事务中完成(所谓的事务,是指作为单个逻辑工作单元执行的一系列操作,要么完全地执行,要么完全地不执行)。
“秒杀”系统的设计难点就在这个事务操作上。商品库存在DB中记为一行,大量用户同时“秒杀”同一商品时,第一个到达DB的请求锁住了这行库存记录。在第一个事务完成提交之前这个锁一直被第一个请求占用,后面的所有请求需要排队等待。同时参与“秒杀”的用户越多,并发进DB的请求越多,请求排队越严重。因此,并发请求抢锁,是典型的商品“秒杀”系统的设计难点。
微信红包业务相比普通商品“秒杀”活动,具有海量并发、高安全级别要求的特点。在微信红包系统的设计上,除了并发请求抢锁之外,还有以下两个突出难点:
首先,事务级操作量级大。
上文介绍微信红包业务特点时提到,普遍情况下同时会有数以万计的微信群在发红包。这个业务特点映射到微信红包系统设计上,就是有数以万计的“并发请求抢锁”同时在进行。这使得DB的压力比普通单个商品“库存”被锁要大很多倍。
其次,事务性要求严格。
微信红包系统本质上是一个资金交易系统,相比普通商品“秒杀”系统有更高的事务级别要求。
普通商品“秒杀”活动系统,解决高并发问题的方案,大体有以下几种:
如图2所示,将“实时扣库存”的行为上移到内存Cache中操作,内存Cache操作成功直接给Server返回成功,然后异步落DB持久化。
这个方案的优点是用内存操作替代磁盘操作,提高了并发性能。
但是缺点也很明显,在内存操作成功但DB持久化失败,或者内存Cache故障的情况下,DB持久化会丢数据,不适合微信红包这种资金交易系统。
所谓悲观锁,是关系数据库管理系统里的一种并发控制的方法。它可以阻止一个事务以影响其他用户的方式来修改数据。如果一个事务执行的操作对某行数据应用了锁,那只有当这个事务把锁释放,其他事务才能够执行与该锁冲突的操作。对应于上文分析中的“并发请求抢锁”行为。