专栏名称: 微软科技
微软中国的认证公众号,分享微软产品资讯,技术方案,成功案例,行业视野,精彩活动。第一时间获取微软在云计算,大数据,移动,企业社交商务等话题的解决方案。
目录
相关文章推荐
IT之家  ·  华为Pura ... ·  2 天前  
新浪科技  ·  #骑手离职后突发意外仍获10万救助#5月25 ... ·  2 天前  
51好读  ›  专栏  ›  微软科技

250年→25年?微软AI+量子计算加速联合利华研发进程

微软科技  · 公众号  · 科技媒体  · 2024-07-16 08:33

正文

请到「今天看啥」查看全文


,从最初的研究和假设生成,到实验和分析:这需要下一代 AI 模型的强大能力,从假设到结果,加速科学过程。它从知识研究和假设生成开始,通过生成数百万潜在的分子候选解决方案来连接点,然后通过数字实验缩小候选范围并分析结果——这一切只需几天。我们在与 太平洋西北国家实验室 (PNNL)的合作中展示了这种方法如何在现实世界中取得成果,我们筛选了超过3200万个候选物,发现并合成了一种新材料,具有更好电池性能的潜力——这是这一新科学发现时代可能性的一个有形例子。


当由自然语言工具驱动时,这一新范式将有助于在每个阶段创建一个由 AI 作为科学助手的自主推理循环。它将通过将这些能力普及,重新定义我们如何接近创新,推动突破性发现。

03

Azure Quantum Elements 的新功能


生成式化学将为负责发现和设计新分子的科学家们带来新一波的创造力。这将推动许多行业的突破性增长,无论是帮助石油和天然气公司发现更强的燃料添加剂以延长发动机寿命,还是帮助粘合剂公司创造一种新化学物质以增强粘附力并去除不需要的残留物。


我们可以将这种发现过程比作在一个大而拥挤且黑暗的仓库中用一个小手电筒寻找一个小盒子。我们一次只能将光集中在一个小区域,而仓库的其余部分则完全黑暗且未知。生成式 AI 技术为我们提供了一个更聪明的光源,能够指向新的方向,让我们看清以前可能未考虑或无法看到的地方。


研究人员可以向生成式化学询问具有所需特性的分子,例如能够快速降解或更容易回收的分子。他们还可以提供关于目标应用的信息,让系统帮助确定相关的分子特性。经过几个步骤后,他们会收到一组符合这些参数的候选分子,供进一步研究。


然而,仅仅生成候选分子并不足以通过 AI 技术改造发现过程。化学中的计算工具的基本标准是,它们能够帮助科学家发现新颖、可合成且在现实世界中有用的分子。这就是为什么我对我们生成式化学方法的实现感到兴奋,它不仅能建议以前未见过的分子,还能提供针对特定应用调整的有用特性,并且这些分子的合成在合理的步骤内是可行的。


因此,生成式化学将为研究人员提供在实验室中合成这些分子候选物时可以考虑的潜在步骤。这一关键组件的支持来源于我们 AutoRXN 软件的能力,通过逆向探索化学反应,帮助评估合成路径以创建目标分子。


在科学家指定了分子的所需特性之后,他们会收到数千个分子候选物。这些候选物可以通过AI推理和后续的高性能计算(HPC)模拟进行进一步精炼,最终筛选出最有希望在实验室合成并进行进一步实验探索的少数几个候选物。


这种能力对于科学发现来说是一个真正的突破。 企业和研究团队可以在几天内寻找高效、成本效益高且创新的方法来开发新分子,从而压缩大量数据库搜索和反复试验实验的迭代过程 这种端到端的工作流程将为科学家提供全新的化合物,有可能引领制造、医药等领域的下一次突破。


我们还宣布推出 加速 DFT ,为科学家们提供一种简化且更强大的量子化学解决方案。在过去的几十年里,DFT 一直是各种分子模拟中非常流行的方法,帮助研究人员模拟和研究原子、分子和纳米粒子,以及表面和界面的电子结构。


我们可以将分子系统比作交通系统,其中以不同速度和方向移动的汽车代表电子。从交通直升机上,我们可以观察到整体的交通流动,即使我们不知道每辆车的速度和目的地。DFT 提供了这种分子系统的“直升机视角”,通过在更高层次上绘制出电子的“密度”,简化了跟踪单个电子的复杂任务。







请到「今天看啥」查看全文