专栏名称: 知识分子
《知识分子》是由饶毅、鲁白、谢宇三位学者创办的移动新媒体平台,致力于关注科学、人文、思想。我们将兼容并包,时刻为渴望知识、独立思考的人努力,共享人类知识、共析现代思想、共建智趣中国。欢迎关注。
目录
相关文章推荐
51好读  ›  专栏  ›  知识分子

新春特献 | 仿佛来自虚空——亚历山大-格洛腾迪克的一生(三)

知识分子  · 公众号  · 科学  · 2017-01-31 07:16

正文

请到「今天看啥」查看全文


brique du Bois Marie,简称SGA,其中包括他的IHÉS讨论班的演讲的讲义。它们最初由IHÉS分发。SGA2由North Holland和Masson合作出版的,而其他几卷则是由Springer-Verlag出版。SGA1整理自1960-1961年讨论班,而这个系列最后的SGA7则来自1967-1969年的讨论班。与目的是为了奠基的EGA不一样,SGA描述的是出现在格洛腾迪克讨论班上的正在进行的研究。他也在巴黎布尔巴基讨论班上介绍了很多结果,它们被合集为FGA,即Fondements de la Géometrie Algébrique,其出版于1962年。EGA,SGA和FGA加起来大约有7500页。




EGA的标题页,章节一。图片来源:the Grothendieck Circle


魔术扇子






如果说数学里有什么东西让我比对别的东西更着迷的话(毫无疑问,总有些让我着迷的),它既不是“数”也不是“大小”,而是型。在一千零一张通过其型来展示给我的面孔中,让我比其他更着迷的而且会继续让我着迷下去的,就是那隐藏在数学对象下的结构。


——《收获与播种》,第27页



在《收获与播种》第一卷里,格洛腾迪克对他的工作作了一个解释性的概括,意在让非数学家能够理解 (第25-48页) 。在那儿他写道,从最根本上来讲,他的工作是寻找两个世界的统一:“算术世界,其中 (所谓的) ‘空间’没有连续性的概念,和连续物体的世界,其中的‘空间’在恰当的条件下,可以用分析学家的方法来理解”。Weil猜想如此让人渴望正是因为它们提供了此种统一的线索。胜于直接尝试解决Weil猜想,格洛腾迪克大大地推广了它们的整个内涵。这样做可以让他感知更大的结构,这些猜想所凭依于此结构,却只能给它提供惊鸿一瞥。在《收获与播种》这一节里,格洛腾迪克解释了他工作中一些主要思想,包括概型、层和拓扑斯。

基本上说,概型是代数簇概念的一个推广。给定一组素特征有限域,一个概型就可以产生一组代数簇,而每一个都有它自己与众不同的几何结构。“这些具有不同特征的不同代数簇构成的组可以想象为一个‘由代数簇组成的无限扇面的扇子’ (每个特征构成一个扇面) ,”格洛腾迪克写道。“‘概型’就是这样的魔术扇子,就如扇子连接很多不同的‘分支’一样,它连接着所有可能特征的‘化身’或‘转世’。”到概型的推广则可以让大家在一个统一方法下,研究一个代数簇所有的不同“化身”。在格洛腾迪克之前,“我认为大家都不真正相信能够这样做,”Michael Artin评论说,“这太激进了,没有人有勇气哪怕去想象这个方法可能行,甚至可能在完全一般的情况下都行。这个想法真的太出色了。”


从19世纪意大利数学家Enrico Betti的远见开始,同调和它的对偶上同调那时候已经发展成为研究拓扑空间的工具。基本上说,上同调理论提供一些不变量,这些不变量可以认为是衡量空间的这个或那个方面的‘准尺’。由Weil猜想隐含着的洞察力所激发的巨大期望就是拓扑空间的上同调方法可以适用于簇与概型。这个期望在很大程度上由格洛腾迪克及其合作者的工作实现了。“就象夜以继日一样将这些上同调技巧带到” 代数几何中 ,Mumford注意到。“它完全颠覆了这个领域。这就象傅立叶分析之前和之后的分析学。你一旦知道傅立叶分析的技巧,突然间你看一个函数的时候就有了完全深厚的洞察力。这和上同调很类似。”


层的概念是由让-勒雷所构想而后由Henri Cartan和Jean-Pierre Serre进一步发展的。在他的奠基性文章FAC (“Faisceaux algébriques cohérents”,“代数凝聚层”,[FAC]) 中,Serre论证了如何将层应用到代数几何中去。格洛腾迪克在《收获与播种》中描述了这个概念如何改变了数学的全貌:当层的想法提出来后,就好象原来的五好标准上同调“准尺”突然间繁殖成为一组无穷多个新“准尺”,它们拥有各种各样的大小和形状,每一个都完美地适合它自己独特的衡量任务。更进一步说,一个空间所有层构成的范畴包含了如此多的信息,本质上人们可以“忘记”这个空间本身。所有这些的信息都包括在层里面——格洛腾迪克称此为“沉默而可靠的向导”,引领他走向发现之路。

拓扑斯的概念,如格洛腾迪克所写,是“空间概念的变体”。层的概念提供了一种办法,将空间所依附的拓扑设置,转化为层范畴所依附的范畴设置。拓扑斯则可以描述为这样一个范畴,它尽管无需起因于普通空间,然而却具有所有层范畴的“好”的性质。拓扑斯的概念,格洛腾迪克写道,突出了这样的事实:“对于一个拓扑空间而言真正重要的根本不是它的‘点’或者点构成的子集和它们的亲近关系等等,而是空间上的层和层构成的范畴”。

为了提出拓扑斯的概念,格洛腾迪克“很深入地思考了空间的概念”,Deligne评价道。“他为理解Weil猜想所创立的理论首先是创立拓扑斯的概念,将空间概念推广,然后定义适用于这个问题的拓扑斯,”他解释说。格洛腾迪克也证实了“你可以真正在其上面工作,我们关于普通空间的直觉在拓扑斯上仍然适用……这是一个很深刻的想法。”

在《收获与播种》中格洛腾迪克评论道,从技术观点而言,他在数学上的大多工作集中在发展所缺乏的上同调理论。平展上同调 (Étale cohomology) 就是这样一种理论,由格洛腾迪克、Michael Artin以及其他一些人所发展,其明确意图是应用于Weil猜想,而它确实是最终证明的主要因素之一。但是格洛腾迪克走得更远,发展了motive的概念,他将此描述为“终极上同调不变量”,所有其他的上同调理论都是它的实现或者化身。Motive的完整理论至今还没有发展起来,不过由它产生了大量好的数学。比如,在1970年代,高等研究院的Deligne和Robert Langlands猜想了motives和自守表示间的精确关系。这个猜想,现在是所谓Langlands纲领的一部分,首次以印刷形式出现在[Langlands]一文中。多伦多大学的James Arthur认为彻底证明这个猜想将是数十年后的事情。但他指出,Andrew Wiles的Fermat大定理的证明,本质上就是证明了这个猜想在椭圆曲线所产生的2维motives的特殊情况。另外一个例子是高等研究院的Vladimir Voevodsky在motivic上同调的工作,由此他获得2002年菲尔兹奖章。这个工作发展了格洛腾迪克关于motive的一些原始想法。


在此关于他数学工作的简短回顾中,格洛腾迪克写道,构成它的精华和力量的,不是大的定理,而是“想法,甚至梦想” (第51页)


格洛腾迪克在IHÉS给学生上课,教SGA。图片来源:the Grothendieck Circle



格洛腾迪克学派






直到1970年第一次“苏醒”的时候,我和我的学生们的关系,就如我和自己工作的关系一样,是我感到满意和快乐——这些是我生活的和谐感知的切实而无可指责的基础之一——的一个源泉,至今仍有它的意义……


——《收获与播种》,第63页







请到「今天看啥」查看全文


推荐文章
管理智慧AI+  ·  王石:其实,我一直在犯错
8 年前
肌肉男训练营  ·  大屌哥的肩部训练法,真是太屌了!
8 年前