专栏名称: 机器学习研究会
机器学习研究会是北京大学大数据与机器学习创新中心旗下的学生组织,旨在构建一个机器学习从事者交流的平台。除了及时分享领域资讯外,协会还会举办各种业界巨头/学术神牛讲座、学术大牛沙龙分享会、real data 创新竞赛等活动。
目录
相关文章推荐
51好读  ›  专栏  ›  机器学习研究会

【课程实录】清华AI公开课:雷鸣、徐小平开讲——别害怕BAT,AI领域投的钱还不够多

机器学习研究会  · 公众号  · AI  · 2018-03-10 23:44

正文

请到「今天看啥」查看全文



两百年前,最大的产业农业在2010年占GDP的比重仅有2.81%,在智能社会我们可以大胆想象,基于人工智能和创造性的产业占比将达到90%,因此这个社会的财富会再一次被分配,中间的机会非常之多,只有静止不动的企业和静止不动的个人一定会被时代淘汰。


人工智能为什么在这两年爆发?数据、算力和算法遇到最佳时机



人工智能有三个要素:数据、算法和运算能力。



人工智能发展60多年,算法也出现几十年,但是唯有今天的数据和运算能力才促使人工智能突飞猛进。就像爱因斯坦的E=mc^2的公式,很早就提出来了,但只有到了原子弹爆炸和核电站,才实现了应用。


人类的数据以每年50%的速度增长,而根据摩尔定律,运算能力也是每1.5年-2年翻番,数据和运算能力成咬合级、指数级提升,终于爆发出威力。


同时,算法也不断演进。


在有监督的学习上,深度学习的表现可以随着数据可以不断增长(蓝线),而一般学习算法到了一定数据之后增长就停滞了(红线),所以当我们学更长尾更复杂的东西的时候,它没有能力学了。



谷歌去年发表的一篇论文结果显示,在视觉任务上,性能随数据集的量级提升而线性提升。同时,模型容量也很重要,数据量越大,对模型复杂度要求越高,模型复杂度越高,它的提升越有效,这也就是为什么ResNet-152的提升远高于ResNet-50。


以深度学习为基础的一系列的高复杂度、高运算量的学习算法打开了一扇门,让机器对原来复杂的能力可以进行学习了。


以视觉识别为例,过去的模式识别主要是找特征点,特征即便抽取数百甚至上千都不可能完全准确,深度学习就能够避免这种情况,这也就是为什么当复杂度很高的时候,很多经典的算法就遇到了瓶颈,而深度学习在一定程度上可以解决这些问题,只有高复杂性模型才能Hold住高复杂性经验,从而进步。


人工智能带来的产业、创业公司以及国家机会



工业机器人和智能工厂。 工厂里工人的岗位已经逐渐在消失掉,留下的是一些工程师,像特斯拉这些现代的工厂里,工人已经很少了。


自动驾驶和智能交通。 Alphabet旗下的自动驾驶公司Waymo已经估值700亿美金,已经直接做L4,测试300万英里;百度今年将与金龙客车合作,小规模量产自动驾驶汽车。这些告诉我们,人工智能已经落地了。


智慧医疗。 以前谈人工智能,很多医生不认可。但现在医生们也开始以开放的态度来对待、拥抱人工智能,看它的能力到底在哪儿。中国的AI医学影像有超过20家创业公司获得融资;美国的FDA已经开始审批AI辅助诊断产品,有消息说,CFDA也在酝酿对AI的医学产品如何评审,今年应该会有明确的方式方法出台。


智能金融 也应用广泛,比如智能投顾、信贷评估、保险等。


上述讲到的是过去产业与AI相融合,AI在其中起到替代作用,并且大量是基层、技术含量不高的职业。AI的新机会在哪儿?


新机会很多情况下是“无中生有”的机会,而服务机器人和人机交互就是这样的机会。以家庭助理机器人为例,这个东西它以前不存在,人工智能的出现让人们拥有了个人秘书,产业机会巨大,因此,谷歌、苹果、亚马逊、阿里、百度等巨头都在做智能助理。








请到「今天看啥」查看全文