专栏名称: 编程派
Python程序员都在看的公众号,跟着编程派一起学习Python,看最新国外教程和资源!
目录
相关文章推荐
51好读  ›  专栏  ›  编程派

用 Python 绘制一套“会跳舞”的动态图形

编程派  · 公众号  · Python  · 2020-11-03 11:40

正文

请到「今天看啥」查看全文


import matplotlib.animation as anianimator = ani.FuncAnimation(fig, chartfunc, interval = 100)

从中我们可以看到 FuncAnimation 的几个输入:


  • fig 是用来 「绘制图表」的 figure 对象;

  • chartfunc 是一个以数字为输入的函数,其含义为时间序列上的时间;

  • interval 这个更好理解,是帧之间的间隔延迟,以毫秒为单位,默认值为 200。



这是三个关键输入,当然还有更多可选输入,感兴趣的读者可查看原文档,这里不再赘述。

下一步要做的就是将数据图表参数化,从而转换为一个函数,然后将该函数时间序列中的点作为输入,设置完成后就可以正式开始了。

在开始之前依旧需要确认你是否对基本的数据可视化有所了解。也就是说,我们先要将数据进行可视化处理,再进行动态处理。

按照以下代码进行基本调用。另外,这里将采用大型流行病的传播数据作为案例数据(包括每天的死亡人数)。
import matplotlib.animation as aniimport matplotlib.pyplot as pltimport numpy as npimport pandas as pdurl = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv'df = pd.read_csv(url, delimiter=',', header='infer')df_interest = df.loc[    df['Country/Region'].isin(['United Kingdom', 'US', 'Italy', 'Germany'])    & df['Province/State'].isna()]df_interest.rename(    index=lambda x: df_interest.at[x, 'Country/Region'], inplace=True)df1 = df_interest.transpose()df1 = df1.drop(['Province/State'






请到「今天看啥」查看全文