正文
通过高速视频评估显示,稳定的工艺可在不到1ms的时间内建立。对于连续波(cw)焊接操作而言,这个障碍必须在焊接开始时就予以克服。匙孔焊接工艺建立后,便会提供恒定的高吸收率。而对于脉冲操作则必须在每个脉冲开始时将其克服。
表1:在不同状态下,铜对近红外激光辐射的吸收率。
焊接所需的高功率密度可以通过使用单模光纤激光器获得。 与其他固体激光器相比,这类激光器具有优异的光束质量和聚焦性能。IPG公司能够提供高达10 kW功率的高功率单模激光器,以及功率超过10 kW的高亮度多模激光器,产品均具有坚固的、已被工业验证的设计。
使用这些单模光纤激光器和低阶模高亮度激光器,可以达到高于108W/cm²的功率密度,甚至在几百瓦的功率下也能够实现可靠的耦合。与功率相当的普通多模激光器相比,这些激光器的强度高达五十倍(见表2)。IPG提供 YLR系列的单模光纤激光器,其功率从100W至1000 W不等,并配有19”的紧凑型机架;此外公司还提供功率高达10 kW的YLS系列光纤激光器(图2)。 这两个系列的整体效率都达到40%。
表2:激光器的功率密度取决于光斑直径
图2:高功率单模光纤激光器:风冷机架式YLR-1000-SM (左)以及3kW系统型YLS-3000-SM(右)。
铜焊接工艺的另一个问题是低速焊接时的不稳定性。通常,小于5m/min的焊接速度会面临焊接不稳定的问题,例如飞溅、气孔和不规则焊缝表面。随着焊接速度的加快,这种不稳定性逐渐消失,焊接工艺趋向稳定。在5-15m/min的焊速范围,质量达到可接受的水平。焊速高于15m/min的话,产生的焊缝基本没有缺陷(图3)。这意味着最佳的焊接参数介于传统的运动系统(例如机器人)所能达到的极限范围内。此外,焊缝深度随着焊接速度的增加而减小,而焊缝也变得非常窄。
图3:加工速度对焊缝质量和焊缝深度的影响
这必须用更高的激光功率来实现,带来更高的系统资金投入。新的工艺研究已表明,这完全可以避免的,工艺稳定性不仅可以通过提高焊接方向的速度,也可以通过光束导向镜片的动态位置变化来实现。这种所谓的摆动技术使其能够在相对较低的焊速下形成稳定的焊点,并且显著降低焊缝深度。