正文
}
return instance;
}
}
OK,加上synchronized关键字之后,getInstance方法就会锁上了。如果有两个线程(T1、T2)同时执行到这个方法时,会有其中一个线程T1获得同步锁,得以继续执行,而另一个线程T2则需要等待,当第T1执行完毕getInstance之后(完成了null判断、对象创建、获得返回值之后),T2线程才会执行执行。——所以这端代码也就避免了Version1中,可能出现因为多线程导致多个实例的情况。
但是,这种写法也有一个问题:给gitInstance方法加锁,虽然会避免了可能会出现的多个实例问题,但是会强制除T1之外的所有线程等
待,实际上会对程序的执行效率造成负面影响。
3.3 双重检查(Double-Check)版本
Version2代码相对于Version1d代码的效率问题,其实是为了解决1%几率的问题,而使用了一个100%出现的防护盾。那有一个优化的思路,就是把100%出现的防护盾,也改为1%的几率出现,使之只出现在可能会导致多个实例出现的地方。
——有没有这样的方法呢?当然是有的,改进后的代码Vsersion3如下:
// Version 3
public class Single3 {
private static Single3 instance;
private Single3() {}
public static Single3 getInstance() {
if (instance == null) {
synchronized (Single3.class) {
if (instance == null) {
instance = new Single3();
}
}
}
return instance;
}
}
这个版本的代码看起来有点复杂,注意其中有两次if (instance == null)的判断,这个叫做『双重检查 Double-Check』。
—— 这段代码看起来已经完美无瑕了。
……
……
……
—— 当然,只是『看起来』,还是有小概率出现问题的。
这弄清楚为什么这里可能出现问题,首先,我们需要弄清楚几个概念:原子操作、指令重排。
知识点:什么是原子操作?
简单来说,原子操作(atomic)就是不可分割的操作,在计算机中,就是指不会因为线程调度被打断的操作。
比如,简单的赋值是一个原子操作:
m = 6; // 这是个原子操作
假如m原先的值为0,那么对于这个操作,要么执行成功m变成了6,要么是没执行m还是0,而不会出现诸如m=3这种中间态——即使是在并发的线程中。
而,声明并赋值就不是一个原子操作:
int n = 6; // 这不是一个原子操作
对于这个语句,至少有两个操作:
①声明一个变量n
②给n赋值为6
——这样就会有一个中间状态:变量n已经被声明了但是还没有被赋值的状态。
——这样,在多线程中,由于线程执行顺序的不确定性,如果两个线程都使用m,就可能会导致不稳定的结果出现。
知识点:什么是指令重排?
简单来说,就是计算机为了提高执行效率,会做的一些优化,在不影响最终结果的情况下,可能会对一些语句的执行顺序进行调整。
比如,这一段代码: